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 This effort examines the potential for damage from plume impingement from an 

electric propulsion system within spacecraft missions that utilize a formation flight 

architecture. Specifically, the potential erosion of a structural material (Aluminum) and 

anti-reflective coatings for solar cell coverglass are explored. Sputter yields for the 

materials of Aluminum, Magnesium Fluoride, and Indium Tin Oxide are experimentally 



 

 

validated using an electrostatic ion source at energies varying from 500-1500 eV. Erosion 

depths are analyzed using white-light optical profilometry to measure potential depths up 

to 1 µm. This erosion data was then utilized to create (or augment) Bohdansky and 

Yamamura theoretical curve fits for multiple incidence angles to look at theoretical 

sputter effects within formation flight regimes at multiple formation distances from 50-

1000 m. The damage from these electric propulsion plumes is explored throughout 

multiple orbital conditions from LEO, Sun-Synchronous, and GEO. Factors affecting 

erosion are: plume density, local geomagnetic field environment and incidence angles of 

target surfaces. Results from this simulated study show significant erosion with GEO 

with minor erosion in some LEO and all Sun-Synchronous cases. 
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𝑇 =  𝑚̇𝑢𝑒 (1-1) 

Equation 1-1: Thrust Equation 

 

1. Introduction 

One of the greatest achievements of the Space Race was when Neil Armstrong was 

the first human to set foot on the Moon and proclaimed, “One small step for man, one 

giant leap for mankind.” And, as the exploration of space became a realization, so would 

the need for advanced equipment for exploration. Many satellites were launched to 

observe other planets in our solar system. The best example of space missions like this 

are Voyager 1 and 2. These missions required gravity assists to make their grand tour 

across the solar system, observing the Jovian planets, and ultimately heading for 

interstellar space. Yet, exploration missions like this were limited by one major factor: 

their inability to significantly alter trajectory without sacrificing operational range.  

The main reason for these limitations in a vast majority of propulsion systems are 

usually derived from the types of propulsion systems used. Propulsion, as defined by 

Sutton and Biblarz, is the act of changing the motion of a body[1]. In space, this usually 

boils down to changing the momentum of the body that needs to be in motion. This is 

usually done by ejecting stored material known as propellant from the body. The act of 

this ejection generates thrust, which leads us to the definition of thrust as defined in 

Equation 1-1. 

As seen from this equation, thrust depends on the mass throughput of the propellant 

as well as its exhaust velocity. The majority of satellites use systems such as cold gas 

thrusters, which eject a stored propellant gas under pressure, and chemical rockets, which 
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𝐼𝑠𝑝 =
𝑢𝑒

𝑔0
⁄ (1-2) 

Equation 1-2: Specific Impulse 

∆𝑣 = −𝑢𝑒 ln
𝑚𝑓

𝑚𝑖
⁄ (1-3) 

Equation 1-3: Rocket Equation 

 

 

 

 

use both a pressurized propellant as well as fuel to provide the energy for the chemical 

reaction. The reason chemical rockets use fuel for their energetic reactions is to increase 

the overall exhaust velocity of the reaction. Exhaust velocity is an important factor to 

consider in spacecraft mission ranges to due to a concept known as specific impulse, as 

defined in Equation 1-2. Specific impulse is a basic metric used to directly analyze the 

propulsion system’s efficiency at using its propellant. As shown from Equation 1-2, the 

exhaust velocity is directly proportional to the specific impulse. Furthermore, if we 

introduce the Rocket Equation as shown in Equation 1-3, this clearly shows that the 

exhaust velocity is also directly proportional to the ∆v of a spacecraft, which is a measure 

of the spacecraft’s ability to change its momentum. Chemical rocket systems have been 

shown to have a maximum specific impulse of 452.5 s, which belongs to the Space 

Shuttle Main Engine1. While this provides a large thrust, this limits the overall range of 

the spacecraft and, therefore, its mission profiles. 

 In the modern era, where satellites are commonplace in the scientific and 

commercial arenas, mission designers and manufacturers are looking for ways to expand 

the capabilities of satellites while making them smaller, cheaper, and more advanced. 

This would also include extending the ∆v of the spacecraft while trying to reduce the 

mass of the overall craft. To this end, a larger number of missions are beginning to use 

Electric Propulsion (now being abbreviated as EP) systems which, unlike chemical 
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systems that use a physical substance as the fuel for the reaction, use electrical power to 

drive the reaction. The result provides a larger mission lifetime through the order of 

magnitude increase of specific impulse. 

At the beginning of the 21st century, more spacecraft missions began to look into 

formation flight concepts, where a number of smaller satellites would be placed in a set 

formation to perform a larger satellite’s job[2]. As their mission profiles will become 

more complex, the need for EP systems are a priority. 

1.1. Electric Propulsion 

1.1.1. General Background 

As defined by Jahn, electric propulsion is defined through “the acceleration of gases 

for propulsion by electrical heating and/or by electric and magnetic body forces[3].” As 

mentioned above, EP systems replace actual physical fuel with electrical power as the 

main energy source for the reaction. This can lead to a much larger exhaust velocity for 

the propellant than through standard chemical means. Electric thrusters can be separated 

into three categories: Electrothermal, Electrostatic, and Electromagnetic. Electrothermal 

systems rely on a heating element that is powered electrically in order to energize the 

propellant that is then expanded through a nozzle. Electrostatic systems use electric fields 

as their primary means of accelerating the propellant. Likewise, electromagnetic systems 

use EM fields to accelerate their propellant. For the purposes of this work, we will limit 

the discussion to electrostatic systems, as these systems have the most flight heritage (and 

have the most direct relation to the work contained herein). 
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Fig. 1: Diagram of DC Discharge Chamber [4] 

As stated, electrostatic systems use electric fields in order to accelerate their 

propellant. To manipulate the propellant via electrostatic forces, it is necessary to ionize 

the propellant. As such, a vast majority of EP systems utilize some form of plasma 

discharge to ionize the propellant. The two main types of discharges that can be used are 

DC, which usually utilizes electron bombardment ionization, and RF discharges, which 

heat the propellant gas with EM waves to ionize the propellant to form the plasma. For 

either type of discharge, most systems use a noble gas propellant such as xenon (and, in 

some cases, argon). This is due to the fact that these gases are non-toxic, do not condense 

on the spacecraft if not kept cryogenically, and their relatively low ionization energies[4]. 

A sample diagram of a standard DC discharge ion source is pictured below.  

 

 

 

 

 

 

 Electron bombardment ionization entails an electron stream from a cathode source 

that is then accelerated by the anode, but kept away from it by a magnetic field via 

Larmor motion. These energized electrons, or “primary electrons” then bombard the 

neutral propellant to ionize it, leaving a slightly less energetic electron (a “secondary”) in 

order to aid in the ongoing plasma reaction process. While this process enables 
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1

2
𝑚𝑢𝑒

2 = 𝑒∅ →  𝑢𝑒 = √2𝑒∅
𝑚⁄ (1-4) 

Equation 1-4: Exhaust velocity/Electric Field relation 

ionization, it is not self-sustaining and requires a constant stream of primary electrons to 

maintain the reaction. As the propellant gas is now ionized by the plasma reaction, the 

ions drift towards the plasma sheath. The sheath is the potential boundary between the 

plasma and the surface that the plasma is contained by (in this case, the discharge 

chamber). As ions drift through the plasma sheath, they experience a small acceleration 

force proportional to the electron temperature (Te) of the plasma, which is the average 

kinetic energy of the electrons in the plasma. While some ions are inevitably lost to the 

walls through this process, those that drift towards the ion extraction grids are accelerated 

by electrostatic forces in order to generate thrust. Through conservation of energy, it can 

be shown that the exit velocity of the propellant is proportional to the square root of the 

electric field. 

 

 There are two types of electrostatic thrusters that are primarily used for space 

missions: Hall Thrusters and Ion Engines. Both types of thrusters have large flight 

heritage histories and are used for various purposes. Hall Thrusters consist of an annular 

discharge chamber with a strong axial electric field for ion acceleration and a radial 

magnetic field for electron confinement. Meanwhile, ion engines consist of a cylindrical 

discharge chamber (as pictured in Fig. 1) and accelerate their drive ions through the use 

of electrically-biased grids. While Hall thrusters have been primarily used for station-

keeping (for their larger thrust-to-power ratio), ion engines have been used for both 
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station-keeping purposes and primary drive purposes on such missions as Deep Space 1 

and DAWN missions from NASA[5,6]. 

 The main advantages of these types of thrusters are their specific impulse ratings. 

Hall thrusters usually have a specific impulse between 1500-2000 s while ion engines 

have ratings between 1500-5000 s. Compared to their chemically-based brethren, this 

gives them a distinct advantage in terms of their ∆v ratings, which give spacecraft a 

larger amount of mission variability. 

1.1.2. Ion Engines 

Ion engines are one of the most popular types of electrostatic thrusters in use today 

for space missions. Ion engine technology has been researched since the late 1950’s 

through the work of Kaufmann and Reader[7]. Through the development of electron 

bombardment ionization thrusters by NASA, the first ion engines used propellants such 

as cesium and mercury, due to their low ionization potentials. However, due to the toxic 

 

Fig. 2: Kaufman-type (left) and Ring-Cusp type (right) [4] 
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(and corrosive) nature of these propellants, researchers ultimately moved to noble gas 

propellants such as xenon and argon. These engines come predominantly in two types of 

configurations: ring-cusp and Kaufmann-types[4]. The main difference in these types is 

the magnetic field configuration. Ring-cusp types have multiple magnets positioned 

around the discharge chamber. The field lines from the magnets form magnetic cusps that 

produce a strong magnetic field near the edges of the chamber. This, in turn, allows for a 

large, low-strength magnetic field envelope to form inside the discharge chamber. The 

low-strength envelope allows for high electron mobility in the chamber to ionize plasma 

while reducing electron loss to the walls. Meanwhile, Kaufman-type thrusters have a 

strong axial magnetic field produced from a solenoid. 

 Regardless of type, both of these configurations share the same basic components: 

a thermionic cathode for primary electron emission, an anode to energize the primaries, 

another thermionic cathode placed on the outside for beam neutralization (to keep the 

environment outside of the thruster charge-neutral) and a gridded assembly that provides 

for the acceleration of the ions. These ion optics are unique to the ion engine and are 

usually the limiting factor in the performance of the thruster (which will be expounded on 

in Chapter 2). Because of the electrical configuration of the ion engine, the anode voltage 

usually determines the beam’s kinetic energy. Ion engines have been designed to generate 

beam energies up to 1500 eV[4]. 

 Ion optics usually consist of three main components: the screen grid, the 

accelerator grid, and the decelerator grid. The screen grid is biased to cathode potential in 

order to repel electrons and attract ions towards the grid holes. The accelerator grid then 

extracts the ions due to being biased very negative with respect to the screen grid. The 
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Fig. 3: Typical Ion Engine w/Optics configurations and biases [3] 

decelerator grid then decelerates the ions as it is held at spacecraft/engine ground. This 

third grid is in place to protect the accelerator grid from ion backstreaming/erosion 

stemming from lack of beam focus (or perveance). An example of this configuration 

located in Fig. 3. 

 Also, as a point of fact, the beam plume of an ion engine (and electrostatic 

thrusters, in general) generally expands from the beam exit with a half-angle of 15º. Also, 

through multiple diagnostic efforts of electrostatic thrusters, it has been shown that as the 

plume propagates downstream from the exit, the plume density falls quadratically[3,4]. 
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1.1.3. Hall Thrusters 

Hall thrusters have been in development since the 1960’s by both the United States 

and Russia, but the latter focused on developing them to flight status. As mentioned 

earlier, they consist of an annular discharge region consisting of an anode, a strong axial 

electric field, a radial magnetic field and a cathode placed exterior to the annulus that 

provides both the primary electrons and the electrons that keep the environment outside 

the thruster charge-neutral. The propellant gets ionized through the Hall-Effect by the 

interaction of the electrons attracted by the axial electric field and the radial magnetic 

field. This strong electric field that provides the ion acceleration determines the beam 

energy, designed to be as high as 350 eV[4]. The primary differences of the Hall thruster 

relative to the ion engine are the lack of internal cathode for primary generation and no 

gridded accelerator assembly. This means that the lifetime of the Hall thruster is only 

limited by erosion of the anode. A typical Hall thruster configuration is pictured below. 

 

 

 

 

 

 

 

 

Fig. 4: Typical Hall thruster configuration [4] 
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1.2. Plume Impingement 

With any type of thruster that is placed on a spacecraft, there has to be a considerable 

effort to negate any potential effects from plume impingement. When thrusters are fired, 

the exhaust gas creates momentum in order the spacecraft to maneuver itself to a desired 

position. However, these gases, once released, also have a certain momentum. When 

these gas plumes impact other surfaces of the spacecraft it causes what is defined as 

plume impingement. Plume impingement has been known to cause counter-torques on 

components of spacecraft, such as solar cells, as well as causing attitude misalignments 

on spacecraft in orbit[8,9]. 

Plume impingement is always a priority in spacecraft mission design. If the plume 

impingement causes unwanted moments to occur on the spacecraft, it could be knocked 

off its desired alignment and therefore require more propellant to compensate for the 

undue moments, lowering the operational lifetime of the spacecraft by wasting 

propellant[8]. Plume impingement can 

also cause other unwanted effects, such as 

heat loading on the surface of 

spacecraft[9]. 

1.3. Project Premise 

As mentioned above, plume 

impingement is a major factor in space 

mission design. However, this becomes 

more complicated with the introduction of 

an EP plume. Instead of just the possibility of spacecraft misalignment and minor heat 

 

Fig. 5: Description of EP Plume Impingement effects 
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loading, we are now introduced to a very high energy collection of ionized particles that 

can have a multitude of different effects on any surface they impact. As they are 

electrically-charged, they can ionize the unintended target surface, causing harm and 

possible erosion to the target. They can also cause a net charge on the surface that can 

negatively affect how the components function or how the beam propagates away from 

the spacecraft. It can also cause overall performance loss from components, such as solar 

cells and their coverglass.  

As missions that require satellite formations continue to rise, the study of formation 

flight plume impingement situations are required. In addition, since there are a larger 

number of craft that are using electric propulsion, this can become a serious problem in 

the realm of formation flight missions that should be explored. There is a wealth of 

simulation data on plume impingement effects on individual satellite components with 

limited amounts of experimental citations. However, very few of those studies focus on 

formation flight fluence levels of ion beams with respect to the distance and orientation 

from the origin of the beam exit. As a result, the purpose of this project would be to 

categorize the expected levels of damage from an EP thruster plume using both basic 

predictive modeling techniques and experimental validation with a variable-energy ion 

source. 

1.4. Project Objectives 

This dissertation work will begin to expound on the limited experimental work related 

to ion beam plume impingement with respect to: 

• Aluminum 6061-T4, a commonly used spacecraft alloy 
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• Solar Cell coverglass with anti-reflective coating 

With these experiments, we will be able to paint a picture of the possible outlooks on 

spacecraft damage caused by EP thruster plumes with respect to material loss and 

performance on solar cells due to anti-reflective (AR) coating loss. Although not the only 

contributing factors to spacecraft failures, these two factors are of primary concern as the 

EP plume can enhance the damage by other phenomenon such as spacecraft charging, 

micro-meteoroid impacts, and plasma damage from the ambient plasma environment on 

Earth orbit[10]. 

This work is also part of a larger collaborative effort between the University of 

Maryland, Penn State University, and Iowa State University through an AFOSR grant 

(No. FA9550-11-1-0158). This collaborative research effort intends to study the 

interactions between a spacecraft and possible plasma environments encountered (LEO, 

GEO, drive plasmas) and reactive gases, such as atomic oxygen[11]. As part of 

Maryland’s contribution to this collaboration, we are providing the material experiments 

listed above as well as providing raw beam plume data. 

1.5. Dissertation Outline 

This collected work will be divided into seven chapters beyond this introductory 

chapter. Chapter 2 will be a literature survey covering some of the influential work in the 

field of ion plume damage and cover the most recent experimental work relevant to this 

dissertation. Chapter 3 will look into the mathematical methods of sputter yield 

calculation and how they will be implemented throughout this work. Chapter 4 focused 

on the modelling of the ion plume for the erosion study in this work. Chapter 5 will be a 
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description of the experimental facilities used to perform the experiment and analyze the 

material samples. The experiments, and their subsequent results, involving the structural 

and AR materials will be covered in Chapters 7-9. Chapter 10 will involve applying the 

experimental results to a test case to examine the overall impact these results could have 

on an average mission. Chapter 11 will list the overall conclusions and interpretations 

from the experiments, as well as any recommended future work.  

1.6. State of the Art Contributions 

The goal of this work is to provide the following to the community as a whole: 

• To provide a set of Xenon sputtering yield data for typical EP energy ranges for 

the following materials: 

o Magnesium Fluoride (MgF2), an AR coating frequently used for space-

rated solar cell coverglass 

o Indium Tin Oxide (ITO), an AR coating that can be utilized in similar 

situations to the MgF2 and is also a space-rated coating for solar cell 

coverglass 

• To augment the existing sets of Xenon sputtering yield data for Aluminum 

o Providing a data set for the beam energy, 1500 eV, which would coincide 

with a specific impulse of nearly 5000 s 

• Provide a theoretical curve fit model for all materials involved in this study 

o Aluminum, to include the new experimental sputter data from this study to 

update or provide an updated curve fit to the existing datasets 
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o Provide all-new curve fits for a range of incidence angles for both 

Magnesium Fluoride and Indium Tin Oxide that have not existed before in 

literature for their sputter interactions with Xenon 

• Provide damage estimates and relations for various maneuvers as a function of 

incident energy, particle flux, incident angle, and formation distance between two 

spacecraft in a simple formation 
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𝑌 = 
〈# 𝑜𝑓 𝑎𝑡𝑜𝑚𝑠 𝑟𝑒𝑚𝑜𝑣𝑒𝑑〉

# 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
(2-1) 

Equation 2-1: Definition of Sputtering Yield [12] 

2. Literature Survey 

2.1. Sputtering Processes 

Sputtering is the process by which the surface of a material becomes eroded, surface 

atoms are removed, and the morphology of the surface gets modified[12]. This process is 

one of the natural byproducts from energetic particle bombardment of energy ranges that 

can naturally occur within an ion beam plume from an EP system. This type of sputtering 

process, which occurs between the energies of 100 eV to a few keV, is defined as 

physical sputtering.  

 Physical sputtering occurs when a particle has transferred energy to the target 

surface that is larger than its surface binding energy. This is usually approximated as the 

target material’s heat of sublimation. Within these energy ranges, there are three different 

collision regimes: single knockon, linear cascade, and spike. The single knockon regime 

classifies an energetic collision that simply knocks off an incident particle from the target 

material. Linear cascade depicts nearly the same type of collision; the main difference 

between the two regimes lies in the fact that the linear cascade allows for the sputtered 

particles to be energetic enough to aid in the sputtering process, unlike in single knockon. 

The last category, the spike regime, usually calls for heavy ions with large collision cross-

sections to cause a high density of sputtered, or recoil, particles to emerge from the target. 

 One of the useful metrics for sputtering processes is the sputtering yield, which is 

defined in Equation 2-1. This relation becomes relevant when trying to estimate the types 
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of sputtering damage one can expect from exposures to certain particle energies. 

Although Equation 2-1 describes the overall definition of sputtering yield, it only 

becomes relevant when the energetic particle’s properties, such as mass and energy, and 

the target material are taken into account. As a result, extensive testing has been 

performed over the years to experimentally determine the sputter yields by interactions of 

many ionic beams to materials of choice[12]. 

2.2. Plume Impingement on Propulsion Components 

As demonstrated above, energetic particle bombardment can be a deciding factor in 

the design of space missions, even down to the design of their components. As mentioned 

in Section 1.1.2, the ion engine’s main lifetime-limiting factor is its set of optics grids 

that provide for the electrostatic acceleration of its propellant. These grids can be affected 

by erosion from both ion and electron impacts to the grids, which affect the overall 

current extraction. 

One of the main design factors of the optics grids comes from the concept of 

perveance. Perveance (Equation 2-2) relates the total extracted current to the voltage 

difference between the electrodes (in this case, the optics grids)[3,4]. However, to fully 

appreciate the concept, one must be familiar with the basic law governing the current 

extraction properties of the optics grids: space charge. 

 

𝑃 =  
𝐼𝑏𝑒𝑎𝑚𝑙𝑒𝑡

∅
3
2

⁄ (2-2) 

Equation 2-2: Definition of Perveance [3,4] 

𝑗 =
4

9
𝜖0 (

2𝑒

𝑚
)

1
2 ∅

3
2

𝐿2
(2-3) 

Equation 2-3: Child-Langmuir Space-Charge Law [3,4] 
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The phenomenon of space charge involves the interaction of electric fields in between 

two electrodes that have a separation distance. For these two electrodes, for a certain 

voltage difference between the two electrodes, there can only be a certain amount of 

current allowed between them before they become saturated, which represents the upper 

limit of current that can be transferred between the two electrodes. This current, the space 

charge limited current, between the two electrodes can be calculated using the Child-

Langmuir Space Charge law, as seen in Equation 2-3[3,4]. 

 As one can see, perveance and the space-charge limited current are intrinsically 

related, as the maximum current (per beamlet) that can be focused is directly related to 

both the space-charge limited current as well as the desired bias differences between the 

screen and accelerator grids. Perveance can even determine the number of gridlets for an 

optics set, based on the focusing parameters that are desired. The penalties of not 

balancing the perveance of the grids can lead to direct damage caused by beam 

impingement. 

 There are three types of perveance effects that can be experienced: normal 

perveance, over-perveance, and under-perveance. Normal perveance involves an optimal 

focusing of the beam and completely leaves the grids untouched due to the behavior of 

the electric fields. Over-perveance involves the under-focusing of the beam, which causes 

a direct impingement of the ion beamlet directly onto the accelerator grids, which will 

cause both loss of material around the gridlets and additional loss of focus of the beam. 

Under-perveance describes the over-focusing of the beam and causes the beam to lose 
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Fig. 6: Examples of Perveance types: Over-Perveance (top), Under-Perveance (middle), and Normal 

Pervenace (bottom) [3] 

focus downstream due to ion-ion collisions; this causes stray ions from the beam to 

backstream and impinge on the accelerator grid, again causing erosion and loss of focus. 

 Grid erosion is a dominating factor in engine design. Even though extensive 

design simulations of understanding the optics grids’ behavior over operation 

lifetimes[13,14,15,16], a large amount of time is spent on experimental testing of ion 

engines to understand each individual’s lifetime beam trends. An example of this was the 

8200 hour wear test performed by Polk et al., on the NSTAR thruster[17]. The NSTAR 

thruster, used for the Deep Space 1 mission, was part of NASA’s Solar Electric 

Propulsion Application Readiness (coincidentally, NSTAR) program to establish flight-

level maturity in EP technology. As a result, extensive testing was performed on one of 
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Fig. 7: Thrust levels of NSTAR 8200 hour wear test [16] 

 

Fig. 8:  Specific Impulse and Efficiency over time from NSTAR 8200 hour wear test [16] 

 

the NSTAR engineering model thrusters. Over the course of the wear test, in situ testing 

of the grids was performed via laser profilometry to test for wear. Perveance was also 

measured by monitoring the accelerator current impingement as well as the screen grid 

currents. Although the thrust was fairly consistent over the course of the wear test, 

perveance of the grids lowered over time across all the major throttle settings available. 

The perveance was lowering due to erosion of the molybdenum optics grids, as the 

accelerator grid lost 10.8 grams of material while developing pit-and-groove erosion 

patterns. This wear also contributed to increased neutral losses, which slightly lowered 

both the efficiency and specific impulse of the thruster. 
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Fig. 9: NSTAR Gridlet Erosion after 8200 Wear Test [14] 

 

 Another effort of understanding 

lifetime performance was carried out on 

the NEXT thruster, another NASA ion 

engine being developed to flight status. 

As a result, a battery of tests have been 

performed on the thruster during its 

operational lifetime[18,19,20,21]. The 

diagnostics included both looking at the 

performance characteristics over time as 

well as the ion beam characteristics[22]. 

Concerning the grid erosion, these were observed using CCD cameras that were mounted 

in the chamber on a vertical assembly. The pictures of the accelerator grid were taken 

every 250 hours for the first 1000 hours and every 1000 hours thereafter[18]. Although 

pit and groove erosion did not start to form on the thruster until 677 h[19], the total 

 

Fig. 10: NEXT Thruster [19] 
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Fig. 11: Accel Grid erosion as function of propellant throughput for NEXT thruster testing [19] 

 

 

Fig. 12: Thrust and Specific Impulse at Full Throttle as function of time for NEXT thruster testing [19] 

 

 

erosion seen over 9000 hours showed that the accelerator apertures showed groove 

erosion close to 30% of the accelerator grid thickness. However, it was also shown that 

despite the erosion shown, the thrust still remained fairly stable, as well as the specific 

impulse. The research effort lead by Kamhawi suggested that when the groove erosion 

would be equal to the grid thickness (resulting in grid failure via structural failure), the 

NEXT thruster would have used 750 kg of Xenon, which would well surpass the lifetime 

requirement of 405 kg[18]. 

 



22 

 

 

 

Fig. 13: Accel Grid erosion at 9500 hours compared to Beginning of Life [19] 

 Beyond these studies, Wirz looked into the effects of the decelerator grid on the 

accelerator grid erosion process through simulation efforts via JPL’s CEX3D code[22]. 

Grid erosion can be caused by lack of focus of the ion beam, but can also be caused by 

Charge Exchange ions (CEX). These ions are typically fast ions that hit a slow neutral 

and exchange charge by picking up an electron from the slow-moving neutral via 

collision. This exchange creates a fast-moving neutral particle as well as a very low 

energy ion. This CEX ion then can be attracted to the negatively-biased accelerator grid 

and causes erosion (such as pit and groove erosion) by colliding with the grid. These 

CEX ions are usually caused by the convergence of multiple ion beamlets that cause the 

main drive ions to be knocked from the beam, lose energy, and then collide with the 

unionized neutral propellant floating out of the discharge chamber. 
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 According to the results from his simulation, using the decelerator grid 

configuration on the XIPS thruster (another NASA thruster in development), it would 

reduce the sputter yield by three orders of magnitude. The largest value of erosion rate 

(a.k.a.: sputter yield), ~275 µm/khr (pit-and-groove erosion), was reduced to practically 

zero in simulations. The incoming CEX ions that cause the erosion were also energized 

less due to not being directly exposed to the heavily negative bias of the accelerator grid, 

reducing the CEX bombardment energies from ~200 to 25 eV. This shows that the 3-grid 

setup drastically improves ion engine lifetime. 

 

 

Fig. 14: Explanation of Decel Grid Effects [21] 
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2.3. Plume Impingement on Spacecraft-Simulated 

There have been a vast number of studies looking into the ion plume impingement 

effects on spacecraft components in order to look at the spacecraft mission lifetime 

operating parameters and predict the overall health of the spacecraft and payload 

throughout its life. Special attention is usually paid to the components that directly affect 

the quality of the mission, such as the payload or the solar arrays, which provide power to 

the whole craft, including the propulsion system. 

 

Fig. 15: Erosion Rate comparisons [21] 
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A considerable amount of the effort that goes into understanding how the plume 

interacts with the spacecraft usually occurs after thorough testing of the thruster’s beam 

environment. As such, extensive modeling has been done on Hall thruster plumes and its 

plasma environment[23,24,25,26,27,28,29]. Plume models are generated with data that is 

gathered from experimental testing or from actual flight data, such as the SMART-

1[25,30,31,32] and Express-A[24,27,33]. 

 For the simulations concerning the SMART-1 mission, the main goal was to 

develop a model using the Spacecraft Plasma Interaction System (SPIS) that would 

investigate the Hall thruster plume effects on the satellite’s solar arrays. These effects 

would include spacecraft charging and structural erosion from plume exposure. One of 

the other main factors for creating this model was to investigate voltage fluctuations (on 

the order of 6 V) that resulted from solar panel rotation. Although the plume was 

thoroughly modeled, because of the orientation of the solar arrays with respect to the 

thruster, only the CEX ions generated from the plume were of any real concern for both 

erosion and spacecraft charging. Although Wartelski’s work did not include any results 

for erosion, it showed that the plume did in fact cause voltage fluctuations along the solar 

panel on both the coverglass and interconnectors[25]. The interconnectors interact with 

the plume by collecting a large electron current from the plume plasma while the 

spacecraft ground collects a part of the ion current from the plume, resulting in the 

potential shifts. 

 

 



26 

 

 

Fig. 16: Potentials (top) and Currents (bottom) on solar cells matched with SMART-1 flight data [25] 

 

 The Express-A satellite flight data was collected with the intent of looking at how 

the plume interacted with the spacecraft in terms of solar array contamination and 

induced torques on the solar arrays. Mikellides’s model looked at two types of particle 

reflection on the solar panels: specular and diffuse. Specular reflection represented an 

elastic collision of the plume particle from the surface and that the particle is reflected 

away from the surface at the same angle and speed that it impacted the surface with; 

diffuse reflection presents a different situation in which the force imparted on the surface 

is normal to it and the particles are reflected with a very small velocity. From the flight 

data and computed torques from the model with both types of reflection, it showed that 

the solar arrays exhibited different reflective quantities based on the side of the solar 



27 

 

 

 

 

Fig. 17: Torques on Solar Panels with respect to solar array rotation [24] 

panel. This seemed to agree with previous flight data from earlier Express spacecraft that 

the surfaces had different reflective properties based on the side it was on. Data from this 

plume interaction model also looked at the sputter depths on the solar panels; the 

maximum depth reported was around 9 microns of material during the firing of one of the 

Hall thruster banks during a maneuver. Some minor deposition of material was reported 

around the edges of the panel[24]. 



28 

 

 

Fig. 18: Sputter depths on simulated Express-A panels [23] 

 

 Contamination on the spacecraft from EP plumes is always of high priority and, in 

addition to the tests performed on Hall thrusters, testing and modeling has been 

performed on the ion engine plumes as well. A portion of these modeling efforts focused 

on the NSTAR thruster used for the Deep Space 1 mission and the ion densities that 

would be generated from ions being sputtered out of the beam and returning to the 

spacecraft, or “backflow” ions. The efforts of Samanta Roy and Davis, respectively, show 

that the backflow ion density for the NSTAR is around 3x1012 #/m3 and 5x1012 

#/m3[34,35]. Similar measurements were taken with the Hall thruster and are also on the 

order of 1012 #/m3 in the back flow region of the craft. The work also shows that an ion 

density on the order of 1012-1014 #/m3 directly impinging on the solar panels, which may 

also lead to the large erosion depths seen on the solar array[24]. 
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𝛽 =
𝐿𝑜𝑐𝑎𝑙 𝑃𝑙𝑎𝑠𝑚𝑎 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒

𝐿𝑜𝑐𝑎𝑙 𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒
(2-4) 

Equation 2-4: Description of Beta 

𝛽 =
𝑛𝑝𝑘(𝑇𝑒 + 𝑇𝑖) + 𝑛𝑜𝑘𝑇𝑜

(
‖𝐵⃗ 𝑔𝑒𝑜‖

2

2𝜇 )

(2-5)
 

Equation 2-5: Beta [2] 

 

 

 Although there is a wealth of simulation 

data concerning the plume’s effects on 

spacecraft, there aren’t many works focusing on 

the effects of the full beam plume on a 

spacecraft. Roberts and Hastings performed a 

study in which the effects of plume impingement 

were investigated. The work looked specifically at two missions: C-Terrestrial Observer 

Swarm (C-TOS) and TechSat21. Both of these missions employed a single Hall thruster 

on each of the microsatellites. The majority of the cases involved the microsatellites in 

cluster formations that were primarily elliptical. However, one formation of interest to 

this work was a formation in which two C-TOS craft are in a linear leader-follower 

formation at a distance of 500 m. The results of the investigation concluded that although 

the maximum particle fluence to the follower was 9.2 x 1011 #/s, this was lower than the 

fluence of the CEX ions from the follower by five orders of magnitude. However, this 

model did not look at any erosion effects or induced torques on the satellites[2]. 

 In modelling the leader-follower interactions with the spacecraft, Roberts and 

Hastings had to take into account the magnetic field of Earth and its effect on the plume 

of the spacecraft. The geomagnetic field, which can be modeled as a dipole, can actually 

 

Fig. 19: C-TOS leader-follower formation 

[2] 
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affect the plume of the beam through 

magnetic pressure. The description of this 

phenomenon can be summarized through 

the plasma parameter β, as described in 

Equation 2-4 & Equation 2-5[2]. 

As β becomes less than 1, the beam 

plume will become magnetized by the geomagnetic field and, as a result, will have its 

velocity redirected. This can prevent the beam plume from actually impinging on the 

follower in the formation, but as Equation 2-5 suggests, depends on a number of factors. 

These factors, and a further look into the geomagnetic field, will be available in Chapter 

4. 

2.4. Plume Impingement on Spacecraft Surfaces-Actual 

Although simulation data is quite valuable, there is no substitute for experimental 

data. There is a wealth of data that can be gained from both laboratory tests and in situ 

measurements performed on spacecraft. As mentioned above, data has been gathered 

from flight missions, such as the SMART-1 [32] and Express-A [33] missions. This data 

collected from the on-board instruments was vital to the development of our 

understanding of the plume’s effect on the on-board system. However, there are large 

limitations of the in-flight data gathered, the main one being that only certain types of 

data can be gathered due to the instruments on board the craft. 

 The SMART-1 mission recorded flight data using its sensor package, the Electric 

Propulsion Diagnostics Package (EPDP) and the Spacecraft Potential, Electron, and Dust 

 

Fig. 20: Graphical representation of magnetic 

field effect on beam plume [2] 
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Fig. 21: Solar Array Power measurements [33] 

Experiment (SPEDE). The EPDP consisted of a Retarding Potential Analyzer (RPA), 

Langmuir Probe, and a Quartz Crystal Microbalance to measure deposited material. 

SPEDE could be operated as a Langmuir probe or an electric field mode that could 

monitor the electric field on the craft. However, the EPDP was limited by the fact that it 

could only monitor the backflow region for ion current. However, the data it collected 

was still valuable, as it measured a backflow ion density on the order of 1013 #/m3 with 

peak ion energies of 35 and 65 eV. These densities seem to agree with many reported 

findings of backflow densities as mentioned above. Their sensors also seemed to pick up 

a very small amount of deposited material, although the data from that sensor was not 

fully analyzed at the time of this work[32]. 

 The Express-A satellite, a Russian telecommunications spacecraft, recorded 

several sets of data over time that looked at the imparted torques on the spacecraft from 

the EP systems as well as solar cell performance. Although the torques and solar array 

reflection data were the same as reported earlier, this study from the flight data also 

looked at the comparison of the predicted solar array power versus the actual power. 

Their study of the solar array data showed that the performance of the solar array was 

initially better than expected and, after seven months, the performance on the array 
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Fig. 22: Xe-Al Sputter Data [37] 

 

 

started to degrade. After investigating further, Manzella indicated that the initial boost in 

performance might have been due to annealing on-orbit, which would then correspond to 

a higher degradation rate than predicted, indicating significant array erosion[33]. 

 There have also been sets of experiments that used Hall thrusters in a lab setting 

in order to look at erosion results or interactions with solar cells [34,35,36]. The 

experiments performed by Pencil showed erosion rates of several spacecraft materials: 

Silver, Iron, Silicon Dioxide, and Borosil[36]. These experiments were performed while 

analyzing the plume environment of an SPT-100 near the end of its service life by 

placing the samples 1 m from the beam exit (radially) while being positioned at a 100° 

angle with respect to the beam exit. This is clearly in the backflow region of the thrust 

plume. 

 A more recent experimental effort of note was performed by Tartz[37] in 2012. 

Their experiment, which was conceived because of the advent of formation flight 

missions, sought to gather sputter yield data of Xenon on several materials, including 



33 

 

Aluminum and Silver. These samples were to be examined via microscopy as well as 

through mass balance. These experiments utilized a variable-energy RF ion source that 

produced a current density of 3 mA/cm2. The current on each sample, which was held 12 

cm away from the ion source, had its current measured directly. In order to determine the 

sputter yield on each sample, the sample would be weighed using a microgram balance. 

The mass difference, combined with the current data, would allow for the calculation of 

the sputter yield. The microgram balance had a precision of 10 µg. Although Xe-Al 

sputter data is not new, there are very few sources. This paper, to date, is the second 

source of Xe-Al sputter in energy ranges lower than 100 keV. The sputter yields closely 

agree to the previously published Rosenberg[38] set. It also expands the previous data to 

a range of 1.2 keV, where the sputter yield is shown to be near 1.7 atoms/ion. It is of note 

that the sputter yields provided by the graphs in Fig. 21 are somewhat larger than the 

Eckstein theoretical model for Xe-Al sputter[12]. 

2.5. Formation Flight 

As mentioned in Chapter 1, the desire for formation flight spacecraft missions are on 

the rise as the need for more innovative and economical approaches to these missions are 

becoming available with today’s technology. However, as close proximity formation 

flight is still a relatively new concept for space missions, there is a need to understand 

and verify many concepts of formation flight, such as navigation, formation keeping, and 

propulsion control (to name a few). Besides looking at simulated missions (such as the 

earlier mentioned C-TOS mission), there are a few missions that will focus on keeping 

multiple spacecraft together in order to accomplish their objectives. 
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One such mission is the Proba-3 mission, which is a technology demonstrator mission 

from ESA that will demonstrate the validity of formation flight for science applications 

while it performs observations on the Sun’s corona.[39,40,41]. This spacecraft will be in 

a leader-follower formation that varies in inter-spacecraft distance (ISD) from 100 m at 

the orbit apogee to 1.2 km in orbit perigee. In order to maintain the formation, the 

spacecraft employ sets of oriented microthrusters that use hydrazine as a propellant. As a 

result of the thruster choice, a very small total delta-v budget (1.6 m/s) is employed for 

the maintenance of the formation[40].  

 Another spacecraft mission employing a formation is the PRISMA mission based 

in Sweden[42,43,44,45,46,47]. This mission, launched in 2009, utilizes two satellites that 

orient themselves in an adjacent formation at close ranges (~100 m) and out to a leader-

follower formation at larger distances up to 2 km. Like Proba-3, this satellite also uses 

hydrazine as its main propellant with a delta-v budget of 170 m/s[43]. Also, like Proba-3, 

this mission is a technology demonstrator to advance the viability of formation flight 

systems. 

 

Fig. 23: Proba-3 Orbital Activities Schematic [41] 
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 TanDEM-X, another testbed mission for formation flight, is an add-on for the 

TerraSAR-X mission in an attempt to expand its capabilities to include digital elevation 

modeling (DEM)[48,49,50]. These spacecraft are capable of multiple formation types, 

such as a monostatic formation (in which the craft are in a leader-follower formation at a 

distance of 30-50 km), a bistatic formation (in which the craft are within 2 km of each 

other but have a slight vertical separation), an alternating bistatic formation (aka the 

HELIX formation), and simultaneous transit. Each of these formations require very tight 

control (with the exception of the pursuit monostatic formation) and require accurate 

propulsive control. 

The common thread among all three of these missions is that they currently use 

hydrazine cold gas thrusters that can offer highly accurate thrust bursts for formation 

keeping. However, each of the applications of these propulsion schemes differ immensely 

because of the individual needs of the spacecraft. With Proba-3, each of its hydrazine 

thrusters provide 1-N bursts for thrust and formation control, yet the delta-v budget is 

miniscule compared to the other two missions. However, Proba-3 needs to fire its 

thrusters more frequently because of the formation restrictions. A much greater delta-V 

 

Fig. 24: Depictions of pursuit monostatic (left), bistatic (middle), and alternating bistatic (right) formations 

for TanDEM-X [48] 
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would be available to the mission if the monopropellant thruster were replaced with an 

EP system. However, the thrust duration would need to be greater due to the lower thrust 

levels. Because of the restrictions on short duration thrusting, it may be difficult to 

schedule maneuvers that would avoid all levels of plume impingement, so the potential 

for surface damage becomes clear. 

2.6. Solar Array Research 

Within the past two years, there have been recent advances in the studies of plume 

interaction with space-rated equipment, particularly solar arrays. One of the ways that the 

ion plume can affect the solar cell is by the erosion of the AR coating on the coverglass, 

which can affect overall efficiency. 

A multi-faceted experimental effort carried out by Hoang involved exposing certain 

samples with 5, 10, and 15-year doses of ion fluence using a lab-mounted Hall 

thruster[51]. This test was carried out in three phases, but the results of interest were 

carried out in phase one of the experiment. The samples involved in phase one were 

exposed to UV radiation and 30 keV proton beams to simulate the environmental 

exposure seen in the GEO space environment. After simulated environment exposure, 

they were exposed to a xenon ion beam at 250 and 350 eV at normal incidence and 75° 

for solar cell coverglass sputtering. The final result after the 5 year dosage was a 2.4 

micron erosion of the MgF2-coated coverglass, as well as a change in the transmission 

properties[51]. 

This transmission change was caused by the erosion of the MgF2 coating on the 

coverglass according to an in-depth study related to the Hoang group’s effort on the 
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sputtering of the AR coating and its effect on the change in transmission properties by 

Yalin[52]. In this effort, experiments were performed to determine the sputter yields of 

MgF2 mounted on CMG coverglass from Qioptiq at energies below 350 eV. This work 

used an ion source to impinge the samples in a climate-controlled environment to 

ascertain the normal incidence sputter yields as well as the angular yields of the material 

at 250 eV.  

 

 

 

 

 

After exposure to the beam, the transmission properties of the coverglass were shown 

to have reduced by 4-6% in the 400-750 nm light wavelength range. Based on their 

experiment observations, this would result in a 3-5% overall cell efficiency drop based 

purely on the erosion of the AR coating alone. 

 

Fig. 26: Transmission readings based on ion exposure [52] 

 

 

Fig. 25: (a): Normal incidence sputter yields for MgF2; (b), Angular sputter yields for MgF2 at 250 eV [52] 
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Fig. 27: ITO Angular Sputter Trends (right), ITO Transmission Changes (left) [53] 

 

Another sputter study looking at transmission changes in AR coating was performed 

by Hu[53]. This study involved exposing ITO samples to an ion plume at varying 

energies and incidence angles to look at the transmission change as a result of erosion. 

This study also indicated transmission loss with erosion, with a 3-4% transmission loss 

after ~70 nm of erosion. They also reported erosion rates for the material, but only in 

arbitrary units. 

A more recent effort was undertaken by Varney looking at biased solar cells 

immersed in an arc jet plume as well as a Kaufman source. These solar cells were biased 

up to 300 V relative to spacecraft ground. Current collection trends were examined at 

different solar cell biases as well as being immersed in a low-density Xenon plasma later 

on. The experiments showed that the collected currents from the solar cells depend on the 

electron temperature of the plasma impinging on it. The experiments also show that the 

solar cells collected currents up to 150 µA from Hall thruster plasma at densities of 1012 

#/m3, which is comparable to the ion densities that would be seen from the backflow 

region of a Hall thruster[54]. 
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Fig. 28: Average Current collected on solar array [54] 
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3. Mathematical Modeling of Erosion 

3.1.  Overview 

In order to validate the experimental results as well as to forecast the effects of plume 

impingement on spacecraft, a mathematical model was developed. This requires a model 

that will look at two things: 1) the ion-material interaction from the plume impingement 

on the target and 2) the overall expected beam fluence from the EP thruster in question. 

This model utilizes elements of the Eckstein/Bohdansky normal incidence sputtering 

model, Yamamura angular sputtering model, the sputter target’s lattice geometry, as well 

as fluence trends observed by numerous lifetime test of the SPT-100 thruster. The 

model’s main goal is to predict the amount of sputtered material based on the ion beam’s 

current, incident energy, and angle of incidence. This model will also take into account 

the divergence of the ion plume, which will heavily influence the impact fluence based 

on the formation distance of the spacecraft. This chapter will look at the basic 

assumptions of the generic sputtering calculation from plume exposure and the fluence 

modeling aspect. 

3.2. Sputtering Models 

As defined by Eckstein in Section 2.1, sputtering is the process by which the surface 

of a material becomes eroded, surface atoms are removed, and the morphology of the 

surface gets modified. For the energy regime of this experiment, the sputter regime that 

we are most interested in is the physical regime, in which the surface is primarily 

modified through direct collision with the energetic particle. The Eckstein method itself 

is a modified version of the Bohdansky sputter yield estimating calculation. 
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𝑌 =  
〈# 𝑜𝑓 𝑎𝑡𝑜𝑚𝑠 𝑟𝑒𝑚𝑜𝑣𝑒𝑑〉

# 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
(3-1) 

Equation 3-1: Sputtering Yield Definition [11] 

 

𝑌(𝐸0) = 𝑞𝑠𝑛
𝐾𝑟𝐶(𝜀)

(
𝐸0

𝐸𝑡ℎ
− 1)

𝜇

𝜆
𝑊(𝜀)

+ (
𝐸0

𝐸𝑡ℎ
− 1)

𝜇 (3-2) 

Equation 3-2: Eckstein Sputter Yield [11] 

𝜀 = 𝐸0 (
𝑚2

𝑚1 + 𝑚2
⁄ ) (

𝑎𝐿
𝑍1𝑍2𝑒2⁄ ) (3-3) 

Equation 3-3: Reduced Energy [11] 

3.2.1. Sputtering Yield Calculation-Eckstein 

The basic mathematical definition of sputtering yield is shown as Equation 

2-4[12]: 

As long as the amount of incident particles that impact the target are known, a sputtering 

yield can be derived. As such, the Eckstein method of calculating sputtering yield is 

based on a curve fit through experimental data that is published on the interaction in 

question. 

The equation is primarily a function of the energy of the incident particles, E0, but 

also depends on the following: the nuclear stopping power of the KrC potential, sn
KrC  

(Equation 3-4), the threshold energy of the target, Eth, and the fitting parameters of q, λ, 

and µ[12]. Equation 3-4 itself is a function of the reduced energy of the interaction 

(Equation 3-1) and the Lindhard screening length, aL (Equation 3-5), based on the atomic 

number, Z, of both the incident and target atoms. The author would like to point out that 

the term W(ɛ) is just a shortcut term that refers to the denominator of Equation 3-4[12]. 

𝑠𝑛
𝐾𝑟𝐶(𝜀) =

0.5 ln(1 + 1.2288𝜀)

𝜀 + 0.1728√𝜀 + 0.008𝜀0.1504
(3-4) 

Equation 3-4: Nuclear Stopping Power [11] 
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Combining all of the above elements generates a logarithmic-looking curve that peaks at 

a certain energy level and then begins to fall, which usually occurs in the hundreds of 

keV. An example of a fitted curve is shown below in Fig. 29. 

 

3.2.2. Sputter Yield Calculation-Bohdansky 

Although the Eckstein method is partially based on experimental data, the 

Bohdansky equation[55,56] involves using the properties of the nuclear stopping power 

of the interaction, the incident energy of the reaction, E0, and a scaling factor, Q, based 

on either experimental data or a best fit to arrive at the sputter yield estimation. A notable 

aspect of this calculation method is that it is purely dependent on the ratio of the 

threshold energy, Eth, to the incident energy of the beam particle. It only relies on one 

scaling factor, unlike the Eckstein method, which relies on three fit parameters in order to 

generate the proper curve fit. The Bohdansky equation, as seen in Equation 3-6, typically 

 

Fig. 29: Comparison of Calculated Eckstein Curves; MATLAB Model (left), Referenced Data (right, [12]) 

 

𝑎𝐿 = (
9𝜋2

128
)

1
3

𝑎𝐵 (𝑍1

2
3 + 𝑍2

2
3)

−
1
2

(3-5) 

Equation 3-5: Lindhard Screening Length [11] 
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𝑌(𝐸0) = 𝑄𝑠𝑛
𝐾𝑟𝐶(𝜀) [(1 −

𝐸𝑡ℎ,𝐵𝑜ℎ

𝐸0
)

2
3⁄

(1 −
𝐸𝑡ℎ,𝑏𝑜ℎ

𝐸0
)
2

] (3-6) 

Equation 3-6: Bohdansky Equation [54] 

generates a similar curve to the Eckstein fit, but is usually around 15-30% larger, 

depending on the scale factor’s sensitivity[55]. 

 As mentioned before, both the Bohdansky and Eckstein sputter models rely on 

Eth as a parameter for the fit. Eth, the threshold energy, represents the lowest energy at 

which the interaction’s sputter yield begins to increase by orders of magnitude to an 

appreciable level of sputter. Normally, this parameter is found theoretically. It can also 

change with the types of interaction the target can experience as well as having the 

possibility to change with incidence angle[57]. It is generally shown that the theoretical 

threshold energy is an order of magnitude lower than the actual threshold energy. The 

actual threshold energy can be found, through more recent studies[37], by fitting existing 

sputter yield data for that specific interaction and treating it purely as a fitting parameter. 

3.2.3. Erosion Modelling 

In order to analyze the results of the experiments, the samples themselves have to 

be measured through a profilometer, which will nominally limit our analysis to 2-D 

profiles that we must use in order to compare to the projections from this model. As a 

result of this, a few assumptions must be made for the model: 1) The exposed profile is 

approximated as a square cross-section; 2) The exposure area to the beam is under a 

constant bombardment from ions at a specific energy for a given time; and 3) The beam 

spot size of the ion beam is much larger than the exposure cross-section. 



44 

 

For assumption one, the simulated cross-section is rectangular as the sample itself 

is a rectangular slab and the sample has a shield leaving a rectangular cross-section 

exposed to the beam. Nominally, if the density of the ion beam is sufficient, it should 

generate a uniform erosion profile that is consistent with the area left exposed by the 

sample shields. However, it is also known that ion sputtering will generate a non-uniform 

sputter profile near the edges of the etch shield. As the sputtering interaction begins, 

material begins to be removed from the selected region. However, as material under the 

sputter shield is removed, secondary sputter interactions will form near the edges as the 

area under the sputter shield will have expanded and cause a small expansion under the 

shield. This is known as anisotropic sputtering[12]. 

 For assumption two, the beam is assumed to produce a constant stream of ions at 

a specified current. This assumption is fairly reasonable but is not exactly accurate; 

during operation of the ion source, the beam current seen by the sample contains very 

 

Fig. 30: Erosion Profiles, Model vs. Actual 
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𝑁𝑎𝑡𝑜𝑚𝑠 =
𝜌𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝑒𝑟𝑜𝑠𝑖𝑜𝑛𝐴𝑒𝑥𝑝𝑜𝑠𝑒𝑑

𝑚𝑎𝑡𝑜𝑚𝑖𝑐

(3-7) 

Equation 3-7: Number of Atoms Sputtered 

 

minor fluctuations that do not exceed 5% of the beam current. However, this is quite 

small compared to the overall current hitting the sample so this assumption can be made 

to simplify calculations. The justification for assumption three also relates somewhat to 

the second. The beam spot size of the ion source is much larger than the sample’s 

exposed surface area. As a result, not only will the beam bombard the entirety of the 

sample surface area, it will also be fairly constant and consistent as the samples will be 

within the core of the beam, where it is assumed that the velocity of the ions are uniform. 

 Now, with the main assumptions of the model in hand, the severity of the sputter 

can now be evaluated. Each material has a density that can be used to estimate the 

number of atoms removed from the material. If the depth of the erosion is known, we can 

then estimate the number of atoms removed using the exposed cross-sectional area, the 

mass density, and the molecular mass of each of these materials. This relation is shown in 

Equation 3-7 below. 

 With the number of atoms sputtered from the material as a result of the ion 

impingement, we now have to relate this back to quantities that we can use for the sputter 

estimation. For this, we can relate the number of atoms lost back to the sputter yield, as 

shown in Equation 3-8. The main variables that we control are as follows: the energy of 

the incident particles, E0 (in eV); the rate of ions impacting the target, F (in ions/sec); the 

exposure area, Aex (in m2); and the time of exposure, t (in sec). The dependent quantities 
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𝑁𝑎𝑡𝑜𝑚𝑠 = 𝑌(𝐸0)𝐹𝑡       [𝑎𝑡𝑜𝑚𝑠], 𝑌(𝐸0) =
𝑁𝑎𝑡𝑜𝑚𝑠

𝐹𝑡⁄  [
𝑎𝑡𝑜𝑚𝑠

𝑖𝑜𝑛
] (3-8) 

Equation 3-8: Sputtered Atoms related to Sputter Yield 

𝐼𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑒𝑛𝑣𝐴𝑒𝑥𝑝𝑜𝑠𝑒𝑑  [𝐴] (3-9) 

Equation 3-9: Impingement Current on Sample 

𝐹 =
𝐼𝑠𝑎𝑚𝑝𝑙𝑒

𝑒⁄   [𝑚] (3-10) 

Equation 3-10: Ion Fluence 

 

 

are: sputtered atoms (Natoms) and sputter depth (derosion, in meters). Equations 3-9 and 3-10 

relate the exposure area current to the impact rate. 

When combined with the sputter yield estimation from either the Eckstein curves, 

Bohdansky curves, or collected data, these present a mathematical estimation of the 

sputter depth based on the independent variables mentioned above. Since noble gases are 

being used for the impingement experiments, the calculation of such is very straight-

forward as the samples themselves should not be reactive. However, the Eckstein method 

is noted that the sputter yield fits for noble gases are subject to inaccuracies up to 

30%[11]. 

3.2.4. Angular Sputtering 

For beam incidence angles > 0º, an angular fit formula has to be used in order to 

approximate the sputter yield for the appropriate interaction of incident and target 

particles. Eckstein has also developed an angular fit equation for these instances. 

However, due to the lack of fit parameters for the equation, the original 

Yamamura[37,58] angular fit equation was used. This equation (Equation 3-11) is reliant 

on fit parameters, as well. However, these parameters (Equation 3-12 and Equation 3-13) 

are only reliant on the ratio of threshold energy to the incident energy. This also helps to 
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determine the optimal sputter angle, αopt, through the use of this ratio as well, shown in 

Equation 3-14. 

 

It is important to note that the parameter P (Equation 3-15) is actually converted 

from Yamamura’s fit parameter, Ψ, which is the ratio of P and the root of incidence 

energy. By itself, P is an abbreviation used by Tartz for the product of Ψ and the root of 

the incidence energy, which is also dependent on the lattice parameter of the material as 

well as the Lindhard screening length, aL (Equation 3-5). 

𝑌(𝛼, 𝐸𝑜)

𝑌(0°, 𝐸𝑜)
= (cos 𝛼)−𝑓𝑒𝑥𝑝[𝑓((1 − cos 𝛼)−1) cos 𝛼𝑜𝑝𝑡] (3-11) 

Equation 3-11: Yamamura Angular Sputter relation [36,54] 

𝑓 = 𝑓𝑠𝑖𝑔 (1 + 2.5 (
ʆ

1 − ʆ
)) (3-12) 

Equation 3-12: Fit Parameter f [36,54] 

ʆ = √𝐸𝑡ℎ
𝐸𝑜

⁄ (3-13) 

Equation 3-13: Fit Parameter ʆ [36,54] 

𝛼𝑜𝑝𝑡 = 90° − 286.0 (𝑃
√𝐸(𝑒𝑉)⁄ )

0.45

(3-14) 

Equation 3-14: Optimal Sputter Angle [36,54] 

𝑃 = (
𝑎

𝑅𝑜
)

3
2⁄

[
 
 
 
 

𝑍1𝑍2

(𝑍1

2
3⁄ + 𝑍2

2
3⁄ )

1
2⁄

]
 
 
 
 

1
2

(3-15) 

Equation 3-15: Fit Parameter P [54] 
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Fig. 31: Normal Incidence XeAl Sputter model (left); Angular Incidence XeAl Sputter model (right) 

 

3.2.5. Matlab Model 

With both normal incidence and angular incidence models covered, the sputter yield 

curves from both types of models for any material can be generated using either fitted 

experimental data or fit parameters generated from previous research. Using simple 

arrays representing the incident energy range of the beam (E0), range of incident angles 

(θ), and the fit parameters represented in each of the equations, graphs can be recreated 

like the examples below in Fig. 30 using parameters from Rosenberg and Tartz[13]. It is 

important to note that there is an approximately 30% difference between the Eckstein and 

Bohdansky models, with the Eckstein model usually under-predicting the sputter yield. 

One other important note is that the angular fit models from this work are based on 

the Bohdansky curve-fit values for those specific incidence energies. As shown in 

Section 3.2.4, the Yamamura curve fit encompasses all angles from 0-90º. Although the 

experimental values could be used for the origin point of the model, for ease of analysis, 

the 0º incidence point will be based on the Bohdansky fit for the appropriate material. 
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Fig. 32: Sample Erosion case 

 

This will represent only a slight shift from the normal incidence data, as it only serves to 

shift the curve on the y-axis of the model. 

With the theoretical models of the materials examined in this work, we can then 

estimate the amount of material lost through plume erosion using the equations from 

Section 3.2.3. We can then track the progression of the erosion based on the time of 

exposure and the amount of ion fluence impacting the target area. 

 As shown in Fig. 32, the erosion profile is linear as long as the ion fluence is 

constant and there are no unexpected changes to the surface area (such as orientation 

change, catastrophic damage, etc.). This trend holds for all sputter yields and energies, 

although the slope of the erosion profile will change based on the sputter yield of the 

material at the conditions of the ion plume. 

 Another important factor to note for this modeling technique is that both the 

Bohdansky and Eckstein methods are only taking into account single component 
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interactions (i.e.: XeAl or XeAg, etc.). While the Eckstein method can be expanded 

to handle alloy targets by just using the composition percentage of the target and applying 

the appropriate sputter yields to the components, it is not meant to handle compound 

targets[12]. Presumably, since the Bohdansky method is only slightly different, the same 

assumption can apply to this method, as well. This means that for properties such as 

Equation 3-3, which has an atomic number dependence, this method cannot apply 

directly to analyzing compound materials, such as MgF2. To this end, this effort aims to 

expand the capabilities of these methods by introducing an effective atomic number 

based on the composition of the compound targets. This Zeff will be provided by the 

method used by Murty[59] as shown in Equation 3-16. For reference, f in this equation 

represents the fraction of the individual atom in the compound. 

 

 

 

 

 

𝑍𝑒𝑓𝑓 = √𝑓1
2.94(𝑍1)2.94 + 𝑓2

2.94(𝑍2)2.94 + ⋯
2.94

(3-16) 

Equation 3-16: Effective Atomic Number [57] 
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4. Mathematical Modelling of Ion Plume 

In order to accurately gauge the lifetime of the components of a spacecraft during 

orbital maneuvers, several factors have to be known: the duration of exposure to the ion 

beam, the incident energy of the beam, the impact fluence of the beam to the different 

surfaces of the spacecraft, and the incident angle of these impacts to the target surfaces. 

However, as mentioned in Chapter 2, the ion plume can be redirected due to geo-

magnetic field interference. As a result, the plume has to be modelled in order to find the 

projected path of the plume and whether it intersects with the spacecraft in any way. This 

magnetic field interference can also change the incident energy of the beam which will be 

explained in Chapter 10.  

To anticipate the changes in the beam throughout orbital maneuvers with a wide test 

matrix of conditions, it is desirable to analyze the conditions throughout the specific orbit 

of the spacecraft as it progresses through the maneuver. To this end, we are looking at 

orbit-stabilizing maneuvers that will keep it in a specific orbit, but can also be expanded 

to orbit-raising maneuvers, as well. This chapter will look into each section of the Matlab 

model that will calculate the approximate duration of beam impact and how it achieves 

this. 

4.1. Orbital Modelling 

To look at the effects of the plume as it propagates from the leader spacecraft to the 

follower, we have to look at the local properties of the geomagnetic field and its effect on 

the plume as it propagates from the leader to the follower. However, as we’re looking at 

multiple orbital parameters and formation distances in the test matrix, we will need to be 

able to look at the plume as it propagates throughout the entirety of the maneuver.  
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At the start, we will look at the basic orbital parameters of the maneuver, from the 

semi-major axis, a, of the orbit, to the starting co-ordinates of the leader spacecraft. From 

the semi-major axis, we can calculate the period of the orbit, as in Equation 4-1, with µ 

representing the Gravitational Parameter of Earth, 3.986x105 km3/s2. The period can then 

be used to determine the time-steps for the Matlab model to use. We can also use this to 

determine how many orbital steps we want to look at over the duration of the examined 

orbit as shown in Equation 4-2 and Equation 4-3.  

Looking at the leader’s starting point, we can use the desired formation distance to 

learn the follower’s coordinates. From the leader’s true anomaly, θ, we can determine the 

𝑇 = 2𝜋√𝑎3
𝜇⁄ (4-1) 

Equation 4-1: Orbital Period 

𝑛 =
360

(36 ∗ (10 ∗ 𝑛𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦))
(4-2) 

Equation 4-2: Number of orbital increments 

𝑡𝑠𝑡𝑒𝑝 = 𝑇
360𝑛⁄ (4-3) 

Equation 4-3: Time of time-step (sec) 

𝜃𝑜𝑓𝑓𝑠𝑒𝑡 =
180 (

𝑑𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

1000 )
𝜋𝑎

⁄
(4-4)

 

Equation 4-4: Follower’s True Anomaly 

ℎ = √𝜇[𝑎𝑏𝑠(𝑎(1 − 𝑒2))] (4-5) 

Equation 4-5: Orbital Angular Momentum 
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𝑟 𝑐𝑜𝑒𝑓 =
ℎ2

𝜇
(1

(1 + (𝑒 cos 𝜃))⁄ )  ,   𝑟 𝑝𝑒𝑟𝑖 = 𝑟 𝑐𝑜𝑒𝑓 [
cos 𝜃
sin 𝜃

0
] (4-6) 

Equation 4-6: Perifocal Position Vector 

𝑣 𝑐𝑜𝑒𝑓 =
𝜇

ℎ⁄   , 𝑣 𝑝𝑒𝑟𝑖 = 𝑣 𝑐𝑜𝑒𝑓 [
− sin 𝜃

𝑒 + cos 𝜃
0

] (4-7) 

Equation 4-7: Perifocal Velocity Vector 

 

 

 

 

true anomaly of the follower spacecraft by looking at the desired formation distance and 

finding the new true anomaly using the arc length of the orbit as displayed in Equation 

4-4. Now that the locations of the spacecraft are known, we can also look at the other 

parameters that are important to us, such as the angular momentum of the orbit, h. This 

would be found through utilization of the semi-latus rectum of the orbit, as illustrated in 

Equation 4-5. 

 Now that we have the initial positions of the spacecraft, we need to put the 

coordinates into the geocentric frame. In order to do this, we can place the coordinates 

into the Perifocal coordinate frame using angular momentum, the eccentricity of the orbit, 

e, and the true anomaly of the spacecraft. The following equations outline the process 

described in this paragraph. 

Once we have the position vector in the Perifocal frame, we can then place it in the 

Geocentric coordinate frame. To do this, we use a rotation matrix to transform the 

coordinates into the appropriate coordinate frame. This rotation matrix utilizes the 

following orbital parameters: inclination i, the right ascension of the ascending node 𝛺, 
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𝑅3(𝜔) = [
cos𝜔 sin𝜔 0

− sin𝜔 cos𝜔 0
0 0 1

]  , 𝑅1(𝑖) = [
1 0 0
0 cos 𝑖 sin 𝑖
0 − sin 𝑖 cos 𝑖

]  ,

 

𝑅3(𝛺) = [
cos𝛺 sin𝛺 0

− sin𝛺 cos𝛺 0
0 0 1

] (4-8)

 

Equation 4-8: R-313 Rotation Matrix 

𝑄𝑔𝑒𝑜−𝑝𝑒𝑟𝑖 = 𝑅3(𝜔)𝑅1(𝑖)𝑅3(𝛺)  , 𝑄𝑝𝑒𝑟𝑖−𝑔𝑒𝑜 = [𝑄𝑔𝑒𝑜−𝑝𝑒𝑟𝑖]
𝑇

(4-9) 

Equation 4-9: Geocentric-Perifocal Rotation Matrices 

𝑟 𝑔𝑒𝑜 = 𝑄𝑝𝑒𝑟𝑖−𝑔𝑒𝑜𝑟 𝑝𝑒𝑟𝑖  , 𝑣 𝑔𝑒𝑜 = 𝑄𝑝𝑒𝑟𝑖−𝑔𝑒𝑜𝑣 𝑝𝑒𝑟𝑖 (4-10) 

Equation 4-10: Geocentric Position and Velocity Vectors 

 

 

 

 

 

 

 𝐵⃗ 𝑟 = −2 cos 𝜃𝑀 (𝑀 𝑅3⁄ ) 𝑟̂ 

𝐵⃗ 𝜃 = −sin 𝜃𝑀 (𝑀 𝑅3⁄ )𝜃 (4-11) 

𝐵⃗ 𝜑 = 0 

Equation 4-11: Polar representation of the Geomagnetic Field [2]  

 

and the argument of perigee ω. These matrices are represented by Equation 4-8 through 

Equation 4-10. 

 

4.2. Magnetic Field Modelling 

After plotting every step of the observed orbit, we now need to look at the local 

geomagnetic conditions of the orbit in order to determine the local magnetic pressure. To 

do this, we incorporate the magnetic model of Earth into the analysis. As mentioned in 

Chapter 2.3, the geomagnetic field of Earth can be simplified to a dipole approximation, 

with a slight polar tilt from the geographic poles of Earth represented by θM, the tilt of the 
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Fig. 33: Magnetic Field Strength along test orbit: a=7478 km, e=0, i=63.4º, RAAN=0º 

 

magnetic poles. A polar form of the coordinates was provided by Roberts and Hastings[2] 

which is represented in Equation 4-11. A simple representation of the fluctuation of the 

magnetic field along a test orbit is displayed in Fig. 33. 

 

 

For the purposes of our Matlab model, we convert the magnetic field equations from 

polar to Cartesian for ease of analysis within the geocentric coordinate frame. This 

equation listed below is an integral part of the Matlab model looking at the local 

magnetic field strength to determine the magnetic pressure. 
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𝐵𝑥 =
3𝑀

‖𝑟 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐‖
5
(𝑥𝑧) 

𝐵𝑦 =
3𝑀

‖𝑟 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐‖
5
(𝑦𝑧) (4-12) 

𝐵𝑧 =
𝑀

‖𝑟 ‖5
(3𝑧2 − ‖𝑟 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐‖

2
) 

Equation 4-12: Cartesian Representation of Geomagnetic Field 

 
From here, as in the previous section, we will need to convert the magnetic field to 

the geocentric frame in order to analyze the local field strength in the proper coordinate 

frame. This leads to a similar rotation matrix with the main exception that this rotation is 

around the magnetic axis, θM. This will allow for the conversion to the geomagnetic 

frame. The rotation matrix and process are represented by Equation 4-13 through 

Equation 4-15. 

 

𝑅𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 = [
cos 𝜃𝑀 0 sin 𝜃𝑀

0 1 0
− sin 𝜃𝑀 0 cos 𝜃𝑀

] (4-13) 

Equation 4-13: Geomagnetic Rotation Matrix 

𝑟 𝑔𝑒𝑜𝑓𝑖𝑒𝑙𝑑 = 𝑅𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐𝑟 𝑔𝑒𝑜 (4-14) 

Equation 4-14: Spacecraft Position Vector in Geomagnetic Frame 

𝐵⃗ 𝑔𝑒𝑜 = 𝑅𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐𝐵⃗ (4-15) 

Equation 4-15: Magnetic Field Vector in Geomagnetic Frame 
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𝑃𝑚𝑎𝑔 =
‖𝐵⃗ 𝑔𝑒𝑜‖

2

2𝜇0
⁄ (4-16) 

Equation 4-16: Magnetic Pressure 

𝑣 𝑒𝑥𝑖𝑡,𝛽>1 = 𝑣 𝑏𝑒𝑎𝑚 [− (
𝑣 𝑔𝑒𝑜

‖𝑣 𝑔𝑒𝑜‖
)] (4-17) 

Equation 4-17: Plume velocity for β>1 [2] 

𝑣 𝑒𝑥𝑖𝑡,𝛽<1 =
𝑣 𝑒𝑥𝑖𝑡 ∙ 𝐵⃗ 𝑔𝑒𝑜

‖𝐵⃗ 𝑔𝑒𝑜‖
2 𝐵⃗ 𝑔𝑒𝑜 (4-18) 

Equation 4-18: Plume velocity for β<1 [2] 

𝛽 =
𝑛𝑝𝑘(𝑇𝑒 + 𝑇𝑖) + 𝑛𝑜𝑘𝑇𝑜

(
‖𝐵⃗ 𝑔𝑒𝑜‖

2

2𝜇0
)

(4-19)
 

Equation 4-19: Beta [2] 

 

4.2.1. Beta Modelling 

As mentioned in the previous section, the local geomagnetic conditions can be 

used to find the magnetic pressure at a specific set of coordinates. The magnetic pressure, 

as described in Equation 4-16, is the energy density of the magnetic field in that region of 

space. For convenience, Equation 2-5 is reproduced here as Equation 4-19. β determines 

the flight path of the plume due to the influence of the magnetic pressure. Of  note is that 

β is not affected by the directed kinetic energy of the beam; only the plume density and 

component temperatures of the beam have an effect on the particle pressure. The ion 

temperature, although present, is usually sufficiently low to be considered negligible in 

this parameter’s calculation. 
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Fig. 34:Sample Beta Transition Graph 

 

If β>1, the plume will travel normally as it propagates from the beam exit, with its 

normal exit velocity and appropriate plume expansion, shown as Equation 4-17. 

However, if β<1, the plume becomes magnetized and will begin to be guided in the 

direction of the magnetic field, with the plume velocity represented by Equation 4-18. 

With the geomagnetic field model in place, we can now look at β at any point around 

Earth’s magnetic sphere of influence and we can look at the trending of β for the 

following parameters: orbital 

altitude, plume density, and 

the ISD of the leader-follower 

spacecraft. 

In Fig. 34, we examine the 

general trend of the location 

of the β transition point as a 

function of orbital altitude at 

a fixed electron temperature and plasma density. The blue line in the graph represents 

β=1, with the region above the line being β<1 (or magnetized region) and the region 

below representing β>1 (or the ballistic expansion region). As the altitude increases, the 

magnetic field strength drops off quadratically; likewise, as the formation distance grows, 

the beam fluence drops off quadratically, as well. This trend is to be expected as per 

Equation 2-5. Also, since β increases proportionately to both plasma density and electron 

temperature, the ballistic expansion region grows under the β transition graph as shown in 

Fig. 36.  
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Fig. 36: Beta Transition w.r.t. np @ Te=3 eV (left); Beta Transition Point w.r.t. Te @ np=5.04x1015 #/m3 

(right) 

 

 

 

Fig. 35: Beta Transition w.r.t. np @ Te=3 eV (left); Beta Transition Point w.r.t. Te @ np=5.04x1015 #/m3 

(right) 

 

The other dramatic source of change for the β transition is a primary function of 

orbital altitude, due to the quadratic weakening of the magnetic field strength as altitude 

increases. From this trend alone, formation flight with plasma thrusters face much greater 

risks at altitudes higher than LEO, especially in the region beyond GEO. Fig. 36 features 

an annotated version of Fig. 35 with markers for the boundaries of LEO and GEO 

altitudes. 
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Fig. 37: Beta Transition w.r.t. np @ Te=3 eV (left); Beta Transition Point w.r.t. Te @ np=1.73x1019 #/m3 

(right) 

 

Although electron temperature (Te) is directly proportional to the plasma pressure, 

it does not have as dramatic of an effect on the location of the β transition as does the 

plume density. This is solely because of the types of ion plumes examined in this work; 

most electrostatic ion plumes have an electron temperature of ~1-3 eV, such as the plume 

of the SPT-100. 

As for the SPT-100 thruster itself, the standard plume density is shown to be 

orders of magnitude larger than provided in the sample curves from Fig. 36. According to 

Goebel and Katz[3], the nominal operational beam current of the SPT-100 is 4.5 A, 

which is around 2.83x1019 #/m3. However, for the effort from Pencil looking at the SPT-

100 performance, the calculated standard operating density is around 1.73x1019 #/m3, 

which is still in the predicted operating regime from Goebel[36]. At this much larger 

plume density, we can now see a drastic change in the location of the β transition. The 

effect of the quadratic reduction of the magnetic field is now more noticeable along with 

the quadratic reduction of plume density from the beam exit. 
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𝑗 =
𝑅2

𝑟2
[𝑘0𝑒𝑥𝑝 (

−(sin 𝜃)2

𝑘1
2 ) + 𝑘2𝑒𝑥𝑝 (

−𝜃2

𝑘3
2 )] (4-20) 

𝑘0 = 0.31732 
𝑚𝐴

𝑐𝑚2,  𝑘1 = 0.48743,  𝑘2 = 1.2279 
𝑚𝐴

𝑐𝑚2,  𝑘3 = −11.073°2 

Equation 4-20: Randolph and Park Current Density Fit [35] 

 Although the region of GEO and beyond is still a viable threat to the safety of the 

follower spacecraft from plume impingement, we now have a much larger region of 

threat beyond LEO, as well. This region between LEO and GEO, where the majority of 

spacecraft operate, has now become a danger zone for mission operations from plume 

impingement, with the right amount of plume density. But, with the utilization of such 

thrusters as the SPT-100 for station-keeping and orbit raising, the threat from plume 

impingement can now be fully realized. 

4.3. Ion Plume Fluence Modelling 

After the orbital conditions have been recorded and the local magnetic conditions 

have been verified, we now need to figure out the impact density of the plume, if any. As 

such, this effect needs to also be accounted for in the plume propagation. As referenced 

earlier, the beam density falls off quadratically the farther away from the beam exit plane. 

This effect can be observed directly by utilizing the Randolph and Park formula for the 

current density trending of the SPT-100[36]. Plots of the current density from this fit 

confirms the quadratic reduction, as shown in Fig. 38. As a result, a simple 1/r2 is 

inserted into the beam current term for the propagator to account for the density dropoff. 
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𝑣𝑏𝑒𝑎𝑚 = √2𝑒𝜑
𝑚𝑖

⁄ (4-24) 

Equation 4-21: Beam Velocity [m/s] 

 

 

Fig. 38: (left) Plume Density profile of SPT-100, (right) Thrust Axis Density Profile 

 

𝐼 = 𝑒𝑛𝑣𝑏𝑒𝑎𝑚𝐴 = 𝑒𝑛√2𝑒𝜑
𝑚𝑖

⁄ 𝐴 (4-21) 

Equation 4-22: Beam Current [A] 

𝐼 = 𝑒
3
2𝑛𝐴√2𝜑

𝑚𝑖
⁄ (4-22) 

Equation 4-23: Beam Current [A] 

𝐼 ~ √𝜑 (4-23) 

Equation 4-24 

4.3.1. Fluence-Energy Relation 

 As mentioned in earlier sections, the parameter β is a measure of the local plasma 

pressure of the plume. A major factor of this is the particle density of the plume, as it is 

directly proportional to the pressure as shown in the numerator of Equation 2-5. 

However, as seen in Equation 4-19, it has also been shown that the kinetic energy of the 

beam does not directly factor into this parameter.  

 Yet, if the kinetic energy of the beam does change, if the particle density remains 

constant, the particle fluence of the beam will change. Equation 4-24 shows the beam 
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𝑓 = 𝐼
𝑒⁄ = 𝑒

1
2𝑛𝐴√2𝜑

𝑚𝑖
⁄ (4-25) 

Equation 4-25: Beam Fluence [#/s] 

𝑓 ~ √𝜑 (4-26) 

Equation 4-26 

𝑓𝑏𝑒𝑎𝑚 = 𝑓𝜑√𝜑
𝜑0

⁄ (4-27) 

Equation 4-27: Fluence-Energy Relation 

𝐼𝑏𝑒𝑎𝑚 = 𝐼𝜑0
√𝜑

𝜑0
⁄ (4-28) 

Equation 4-28: Current-Energy Relation 

 

velocity of the plume as derived from standard energy relations. We also know, from 

standard electric relations, that the beam current can be defined as a function of the beam 

velocity, given that the particle density and impact cross-sectional area are known. We 

can then insert Equation 4-24 into this relation, as shown in Equation 4-24 and is even 

more evident with further manipulation in Equation 4-21.  

From this, it can be derived that, given the density and area remain constant, the 

current is then a function of the kinetic energy of the beam (Equation 4-22). Also, as the 

fluence of the beam is defined as the beam current divided by the electric charge 

(Equation 4-25), it can be derived that the fluence of the beam is then also proportional to 

the kinetic energy of the beam, as seen in Equation 4-26. Thus, we can determine the 

beam fluence for all energies based on an initial operating particle density and beam 

energy of a specific ion source, as seen in Equation 4-27 and Equation 4-28. 
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𝑡ℎ𝑖𝑡 =
(
𝑑𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

1000
)

𝑣𝑏𝑒𝑎𝑚

(4-29)
 

Equation 4-29: Plume Impact Time [sec] 

𝑡𝑜𝑙 =
𝑑𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

1000
sin 15° (4-30) 

Equation 4-30: Tolerance Window [m] 

 

 

4.4. Matlab Model 

In order to estimate the damage potential of the beam plume throughout a variety of 

conditions, it is essential to calculate all the local parameters throughout the maneuvers 

that the spacecraft are performing. For this, not only do the local conditions of the 

spacecraft need to be calculated at every timestep, the plume propagation needs to be 

observed within each timestep as well. As mentioned in Chapter 4.2.1, the plume has the 

potential to be diverted from its original flight path due to geomagnetic interference 

within the formation distance. However, even if the plume is diverted, the plume still has 

an associated velocity along the magnetic field line, as shown in Equation 4-18. 

However, since this diverted plume can still impact the spacecraft, we must be able to 

map both the spacecraft position and the relative position of the plume of the leader 

spacecraft at every point in the maneuver. Utilizing MATLAB, we are able to look at any 

maneuver from the leader and the follower spacecraft with a certain formation distance 

and calculate the impact time of the plume throughout the maneuver, given the local 

conditions. 

Before the model is explained in detail, there are a few assumptions that must be 

taken into account: 1) For analysis purposes, the orbits examined in this work will be 

circular orbits, although this theory can be extended to more general orbits; 2) the 
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follower spacecraft will have a tolerance window in which if any part of the plume hits, 

the model will count it as a hit on the spacecraft; 3) no transition effects of the parameter 

β will be taken into consideration, as it is outside the scope of this work; 4) the plume is 

modeled as a packet with a center of mass that can be easily observed in the model while 

assuming the basic expansion angle of the plume wherever β>1. 

The impingement model takes in a particular orbit to examine with these conditions: 

starting point (in the form of true anomaly), orbital altitude (in km), eccentricity, 

inclination, RAAN, the argument of perigee, the beam energy (in eV), and the formation 

distance that’s anticipated. Because of the nature of the leader-follower formation, the 

follower spacecraft must be within the same orbit as the leader, although at an offset 

position in the orbit, which the model determines based on the formation distance via 

Equation 4-4. The model also determines the initial beam velocity based on the kinetic 

energy of the beam, as shown in Equation 4-24. 

 From here, we need to determine how to break up the orbit into its timesteps. 

From the initial orbital conditions, the period of the orbit can be calculated. Based on the 

number of increments that we want to observe, we can then easily split this up into 

manageable timesteps for the program. Also, based on the kinetic energy of the beam and 

the formation distance of the spacecraft, we can calculate the expected time of impact of 

the plume. However, since we also have these parameters, we can determine the expected 

interaction field of the spacecraft. Since the model is looking at the propagation of the 

plume in a rudimentary sense, a sphere of influence, or tolerance window can be added to 

the follower spacecraft. This is based on the non-geomagnetically manipulated beam 

divergence angle and the formation distance, which is outlined in Equation 4-30. As 
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𝑟 𝑝𝑙𝑢𝑚𝑒,𝑙𝑒𝑎𝑑𝑒𝑟 = 𝑟 𝑔𝑒𝑜,𝑙𝑒𝑎𝑑𝑒𝑟 + (𝑣 𝑒𝑥𝑖𝑡,𝑙𝑒𝑎𝑑𝑒𝑟 ∗ 𝑑𝑡) (4-31) 

Equation 4-31: Plume Propagation equation 

 

expected, this tolerance window will grow or shrink based on the anticipated ISD of the 

formation. From here, we can calculate the local magnetic field strength based on the 

projected orbit that insert into the model (as covered in Section 4.2). 

 We now have the established environmental factors the model has to take into 

account. Now, we must examine the orbit step-by-step in order to determine whether the 

plume impacts the follower spacecraft. To observe the plume propagation, we look at it in 

its own timescale between origin and its expected impact time, as calculated in Equation 

4-29. Looking at a time interval dt, we can determine the plume’s position relative to the 

leader spacecraft via simple kinematics. However, the model’s job is to determine what 

the value of β is at the plume’s local position. If β>1, the velocity will follow from 

Equation 4-17 and perform as normally expected; if β<1, the velocity will then follow 

Equation 4-18 and become guided by the geomagnetic field, diverting its direction. This 

can cause the plume to still hit the spacecraft based on the local conditions or to miss the 

follower entirely. However, based on the follower spacecraft’s sphere of influence (SOI), 

if the plume intercepts that volume, the model considers it as an impact on the spacecraft, 

due to the potential width of the plume after the geomagnetic interference. 

 These impacts are then represented within a hit graph, or a graph that shows the 

intersections between the plume and the SOI of the target spacecraft. This graph takes all 

intersections of the sphere into account, including at intermediate distances between the 

beam exit and the target. This graph, in effect, shows the potential distances that plume 

impingement can occur for a given set of orbital conditions, based on the target’s SOI. 
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Fig. 39: Sample Hit Graph from MATLAB model 

 

However, it is important to note that the only impacts that count as a “hit” for the 

purposes of the model are the hits that occur at the specified distance under observation. 

An example of a hit graph is pictured in Fig. 39.  

In this graph, it can be seen that the plume impacts the follower spacecraft over 

the entire orbit. The yellow sections of the graph represents the intersection with the SOI. 

However, shown on the graph between the ISD of 140-250 m, hits are shown in these 

intermediate regions, as well. However, as mentioned above, this graph depicts any 

intersection of the plume with the SOI in yellow. As such, only impacts at the maximum 

ISD are considered to be “hits”. 

Based on the number of hits from the analysis, the model then calculates the 

number of impacts recorded throughout the orbital maneuver. We also assume, for 

convenience, that if the plume impacts the spacecraft within that timestep the plume must 

impact for the entirety of that timestep. Taking this into consideration, we can calculate 

the total amount of time that the plume will impact the spacecraft. This time can be taken 

to the erosion model for analysis of sputter depths as discussed in Section 3.2.5. 
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Fig. 40: Sample Trajectory from Plume Matlab Model 
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Fig. 41: Experimental Facility with Power 

Supplies and Recirculating Chiller 

 

5. Experimental Facilities 

5.1.  Overview 

In order to carry out the experiments we propose in this work, a variety of equipment 

ranging from vacuum chambers and ion sources (to carry out the experiment) to analysis 

equipment such as scanning electron microscopes and optical profilometers to analyze 

the topography and characteristics of the exposed samples was used. This chapter will 

outline the details of the equipment used to carry out the experiments and its evaluation. 

5.2.  Vacuum Chamber 

The plume impingement experiments have to be carried out in a vacuum-like 

environment for the ion beam to propagate. The vacuum chamber used in this experiment 

is a custom-designed pressure vessel from 

Kurt J. Lesker Company. This chamber has 

an internal volume of approximately 128 L 

with an 46.7 cm diameter and 74.7 cm 

interior length. The chamber is capable of 

internal pressures of 1x10-8 torr, although 

these pressures were not required for the 

experiments contained in this work. Internal 

pressure is monitored through a combination 

of thermocouples, a capacitance manometer, 

and an ion gauge for pressures below 1 

mTorr. The vacuum chamber also utilizes a magnetically-levitated turbopump with 
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Table 1: Vacuum Chamber Components 

Pumps 

Roughing Pfeiffer Duo 10 M Rotary Vane Pump 

Turbomolecular STP-301 Turbomolecular Pump 

Controllers 

Multi-Gauge KJL-4500 Ionization Gauge Controller 

Throttle Valve MKS 651C Pressure Controller 

Turbomolecular STP-301/451 Turbopump Controller 

Sensors 

Thermocouples KJL-6000 Thermocouple Tubes 

Manometer MKS 626B Capacitance Manometer 

Ionization Gauge Bayard-Alpert Ionization Gauge 

 

butterfly valve that allows us to accurately control the internal pressure inside the 

chamber for a variety of testing conditions. A complete listing of the equipment attached 

to the chamber is provided below in Table 1. 

 

 

 

5.3.  Ion Sources 

5.3.1. SPPL-1 Ion Source 

In order to carry out our earlier 

experiments with plume impingement, a lab-

grade ion source was created in order to observe 

the elemental composition changes and 

topographical changes induced by argon ion 

plume impingement. This source was capable of 

changing the beam energy up to 300 eV as well 

as varying the beam current output to the target[60]. A detailed description of this source 

is available in Appendix E. 

 

Fig. 42: SPPL-1 



71 

 

5.3.2. Tectra GenII Ion Source 

Due to the variety of experiments that are required for this study, a decision was 

made after preliminary testing to move to the Tectra GenII Ion Source. This ion source 

provides expanded capabilities from the SPPL-1, such as a variable beam energy up to 

2kV and a beam current of up to 20 mA at standard working distance. The sputter gun 

also provides beam neutralization through the form of a biased tungsten filament 

neutralizer. 

Unlike the SPPL-1, which was made as a lab-model DC ion engine, this ion 

source uses electron cyclotron resonance (ECR) to ionize neutral particles using radio 

frequency (RF) waves. This method of ionization allows for a non-contact method of 

ionization, as the DC method requires a direct exposure to both an anode and cathode for 

the discharge required to make the plasma. In addition, the GenII is equipped with an all-

ceramic plasma cup, which allows for the ionization of reactive gases (such as oxygen). 

For this source, the ionization waves are provided by a magnetron source that is directly 

attached to the rear of the ion source.  

 

Fig. 43: Tectra GenII Ion Source (image provided from www.tectra.de/plasma-source) 
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The GenII ion source can use a variety of gases. For the purposes of preliminary 

testing, Argon gas was used to validate the erosion modelling referenced in Chapter 3. 

The bulk of the experiments (as well as the major contributions from this work) were 

performed with research-grade xenon, as this is most representative of the propellants 

used for EP systems. The gas is fed from a tank-mounted regulator through a variable 

leak valve mounted directly to the GenII to moderate gas flow into the vacuum chamber. 

This allows for fine control of particle fluence for the experiment. It is important to note 

that due to the use of heavy gases (i.e.: argon and xenon), frequent oxygen/air plasma 

cleaning is needed to reduce/eliminate buildup of sputtered molybdenum from the grids, 

as this will reduce the output of the source and ultimately cause isolation issues between 

the grids. Heavy buildup can be removed using a diamond grinding wheel. 

The GenII is divided into four main components: the magnetron, the anode grid, 

the extractor grid, and the neutralizer filament. As mentioned above, the magnetron is 

used to provide the ionization wave to the gas fed into the discharge chamber. The anode 

and extractor grids (made of molybdenum) make up the ion optics of the device, which 

both set the ion beam energy (anode) and extract the ions from the discharge chamber 

(extractor). In addition to the potential electrical isolation issues mentioned above, the 

anode must also be properly insulated from the gas inlet via insulation wool. If the wool 

is compromised, an arc can form between the anode and the gas inlet due to the 

conduction path provided by the plasma if the anode potential is high enough. The 

neutralizer is made of a tungsten filament that allows for the thermionic emission of 

electrons to make the area around the beam exit charge-neutral. The list of power 

supplies and their matching components are listed in Table 2. 
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5.4. Diagnostic Equipment 

5.4.1. Retarding Potential Analyzer (RPA) 

In order to analyze the beam conditions, we are employing the use of an RPA. 

This instrument allows us to observe the 

beam current and energy of the ion source 

during normal operation. From these 

readings, we can derive the beam flux at 

different spots of the beam as well as get an 

overall picture of what the beam geometry 

and current will look like as a function of 

both axial and radial propagation.  

To this end, we are employing the Kimball 

Physics FC-71A[61] Faraday cup with attachable 

energy analyzing grids to convert it to an RPA. An 

RPA usually utilizes four grids: 1) a floating grid 

Table 2: GenII Power Supplies 

Component Power Supply Capabilities 

Anode Glassman FJ2P60 2000 V, 60 mA 

Extractor Glassman EH5N20L -5000 V, 20 mA 

Neutralizer Acopian A015HX1000M 15 V, 10 A 

Magnetron Tectra Magnetron 4000 V, 60 mA 

 

 

 

Fig. 44: Kimball Physics FC-71 A Faraday Cup 

w/energy analyzing grids [50] 

 

 

Fig. 45: FC-71 A Grid Layout [50] 
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that floats to the potential of the beam being analyzed; 2) a suppression grid that 

significantly reduces/eliminates any oppositely-charged particles that are not desired in 

the measurement; 3) allows only particles above the voltage set by the grid into the 

collection chamber; and 4) a secondary suppression grid that keeps any background 

particles of opposing charge scattered by the particle impact on the collector to be 

repelled back into the collector to reduce the effect on the current collection of the 

collector. However, the FC-71A is composed of three grids: a floating grid, discriminator 

grid, and a suppression grid for backscattered particles. With the grid set-up as specified, 

it is really meant to analyze one type of particle beam at a time instead of a beam 

composed of both ions and electrons. However, with the small amount of background 

electrons in the beam, the effect on the measured current is negligible. 

However, with prolonged use of the RPA, there is a need to regularly replace the 

grids. Exposure to the xenon beam at the energies and durations required for the 

experiments will erode the tungsten mesh from the grids. Eroded mesh from the beam 

will result in inaccurate beam current readings which will result in high standard 

deviations in the experimental readings and sputter yields. 

5.4.2. Veeco Wyko NT1100 Optical Profilometer 

In order to measure the erosion experienced by each sample, an optical 

profilometer was employed to directly examine the 2-D surface profile of the sample in 

specific areas. This instrument, provided by the University of Maryland MEMS Sensors 

and Actuators Lab (MSAL), uses white-light interferometry in order to determine the 

depth of the surface under the scan area. These scans can be performed in either Vertical 

Scanning Interferometry (VSI) or Pressure Scanning Interferometry (PSI) mode[62]. VSI 
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mode uses two different wavelengths of light to create destructive interference in the 

viewing area, which allows the instrument to examine the topography of the sample. PSI 

mode uses one wavelength of light, which is more accurate, and is meant for erosion 

depths up to 150 nm. Although PSI mode is meant for higher resolution scans, it is also 

meant for smoother samples with very little variation such as optical glass or super-

polished metals[63]. This setting is also more sensitive to vibration and other 

environmental factors which can interfere with the scanning process. With this and the 

potential roughness of the erosion area in mind, all sample data from this device was 

acquired using the VSI method of profilometry. 

 When a scan is performed, the data is converted into a contour image with heat-

map coloring corresponding to the height ranges observed in the scan area. From this, 2-

D profiles can be extracted from the contour image, where average heights of selected 

parts of the profile can be calculated. The instrument, which at its lowest magnification 

has a viewing area of 1.35 x 0.95 mm, can scan a sample profile down to the precision of 

±1Å.  

While the precision of the instrument is amazing, due to the width of the sample 

cross-section, the lowest resolution scan is the only possible way to determine the depth 

throughout the entire area of interest (AOI). This scan uses the 5x magnification of the 

instrument with the viewing area listed above. However, due to environmental conditions 

in the scan area (i.e.: vibration, gusts of air from vents, etc.), the scans may have a 

variance up to ± 30 nm as long as the scan is well-focused. The other issue is due to the 

scanning method of the device; the depth of the sample must exceed 150 nm in these 

conditions to have a reliable scan.  
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This method of profilometry, as implied, is non-invasive. As a result, the samples 

can be preserved for future experiments or scans should they be necessary. Optical 

profilometry offers higher resolution scans than their contact profilometer counterparts, 

but their main disadvantage lies within relying on the light reflection from the samples; if 

the sample is too reflective, the scans can be inaccurate. In addition, if the sample has 

black discolorations from burns, it will also affect the scan. However, with the samples 

examined for this work, no issues have occurred. Sample output from the device can be 

seen in Fig. 46. 

 

5.4.3. Veeco Wyko NT3300 Optical Profilometer 

Throughout this project, data was also collected using an NT3300 Optical 

Profilometer provided by the University of Maryland FabLab (part of the Maryland 

 

Fig. 46: Sample output from NT1100 Optical Profilometer 
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Fig. 47: Veeco NT3300 Optical Profilometer 

 

Nanocenter). This optical profilometer is a slightly newer version of the NT1100 with 

similar resolution limits. This profilometer was kept in a clean-room environment and as 

such, most measurements were relatively unaffected by the surrounding environment, 

resulting in slightly improved scans of the samples. Also, as with the NT1100, the data 

acquired from the NT3300 was taken using the VSI method of profilometry. 
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5.4.4. Scanning Electron Microscope (SEM) with Electron Diffraction 

Spectrometer (EDS) 

Throughout the experiment, several SEM scans were taken of samples that were 

exposed to the ion beam. These images were taken to assess the topography of the 

exposed areas as well as the elemental composition of the target areas. This was 

performed using a Hitachi SU-70 SEM with an attached Brüker EDS device, which can 

give target area compositions by using x-ray excitation. Data from these measurements 

has appeared in prior published work from the author[60]. 
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Fig. 49: Photo of uneroded Al sample (above) 

and eroded Al sample (below) 

 

 

Fig. 48: 3-D Representation of Sample Scan 

from Veeco NT3300 

 

6. Experimental Procedures 

6.1. Overview 

This section will outline the steps of performing an erosion experiment along with 

some of the basic operating guidelines for the experiment from the prep of the experiment 

to the analyses performed on the data collected from the experiment. This section will 

provide a detailed look into the profilometry analysis as well as the error analysis for 

each data point reported. 

6.2. Erosion Testing Procedure 

To gather the sputter yield data for each material, the sample has to be directly 

exposed to a representative plasma beam 

within a vacuum chamber. These samples 

have to be reasonably flat in order to ensure 

that whatever effect the plasma sputter has on 

the sample, it is not significantly affected by 

variable topography. From there, these 

samples will be placed in the chamber and 

erosion will take place while current readings of the samples will take place in situ.  This 

data will then be related to the erosion depth observed from the profilometer and, through 

analyzing the depth using the equations from 

Section 3.2.3, a sputter yield for a specific 

sample can be obtained. 

The material samples, fabricated within the 
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University of Maryland FabLab, were created by coating a 500 µm thick silicon wafer 

with the maximum applicable layer possible for that specific material on the sample. The 

samples have the following thicknesses: a 1 µm thick coating for aluminum; a 500 nm 

layer of Magnesium Fluoride; a 600 nm layer of ITO. These layers were applied through 

atom layer deposition on the silicon wafers and then split into multiple 3 x 7 mm samples 

for use on the sample holder mounted to the RPA. The use of the silicon wafer is two-

fold: 1) the coating of the silicon wafer will provide an ultra-flat surface for the material 

to lay on, which lowers the potential errors from profilometry analysis; 2) the samples 

can be cut to exact measurements using a computerized diamond rotary saw to slice the 

coated wafers. It is also important to note that the exposed area is 3 mm2. This allows for 

the scans from the Veeco profilometer to look at the entirety of the exposed area as well 

as the edges of the unexposed borders. The representative scan is pictured in Fig. 49. 

The experiment was performed by doing the following: 1) The sample is mounted 

into the RPA sample holder and then placed in front of the ion source in a manner similar 

to Fig. 42; 2) the vacuum chamber is then pumped down to a standard operating pressure 

of around 0.2-0.4 mTorr, which is the pressure at which the mean free path within the 

chamber was more than sufficient for the beam to propagate properly; 3) the plasma 

source is then ignited and the desired beam conditions for the experiment are set; 4) once 

the beam begins propagating, the picoammeter begins recording the beam current from 

the RPA for the duration of the experiment. The picoammeter is usually set to look at a 

total number of loops, data points per loop, as well as the total number of milliseconds 

between each loop. Although the total number of loops is manually set based on the 

estimated time for the experiment, the other parameters are kept at 20 data points per loop 



81 

 

every 15000 milliseconds (15 seconds). This provides an optimum number of data points 

to average over as well as preventing the device from having one loop spill into another, 

causing recording issues. Once the experiment is over, the sample is then removed after a 

small cooling period and placed inside the sample case to await scans on the Veeco 

profilometer. 

After each erosion experiment, the current data is then post-processed to find the 

average erosion current for the experiment. The data from the picoammeter is output 

through a LabView text file (.lvm), which can be read through Microsoft Excel. This file 

contains the averaged current for every loop recorded by the device. There is also a 

second output .lvm that reports every single beam current recording per loop, just in case 

the first output file has any suspect reported averages. The reported averages are then 

imported into an Excel workbook to look at each loop’s recorded current average. Here, 

we can then derive the actual beam current that hit the exposed surface area of the 

sample, based on the expected distance away from the collector (for angled samples, as 

they have a stand that is a significant distance away from the RPA collection orifice) as 

well as the difference ratio between the collector and the exposed surface area for the 

samples. This can be performed via simple manipulation of Equation 4-21. Once this is 

known for every loop, the averaged current can be reported for the duration of the 

experiment as well as the standard deviation of the reported current loops. These are 

reported as the standard deviation of the population of data and are also only reported to 

1-σ. 
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Due to relatively high vacuum pressure for these sputter experiments, there is the 

potential for impurities to be deposited on the surface. For more on this subject, please 

refer to Appendix D. 

6.3. Profilometry Analysis Procedure and Sputter Yield Calculation 

After a sufficient time has passed, the samples are then taken to the University of 

Maryland FabLab for scanning on the Veeco profilometer. Although this environment is 

a clean room environment, due to the shallow depths expected (<500 nm), multiple scans 

are taken within the same scan region of the sample (~10-12) to allow for the variation 

between scans (from either instrument noise or unintended environmental factors such as 

sudden vibration or changes in pressure). This lengthy process is repeated for each 

sample in the entirety of this work to ensure high-quality data. After these scans are 

taken, they are then post-processed through the Veeco proprietary software, Vision32, as 

seen in Fig. 46. 

Vision32 can analyze the average depth of 

the entire sample from the viewing window of 

the scans as well as provide other possible 

metrics of interest, such as surface roughness 

values, etc. However, for the purposes of this 

experimental effort, we’re choosing to look 

purely at the average depth of the sample. In 

order to report this, we can take the sample 

data and divide it into five individual sections, 

as seen in Fig. 50. Sections 1-4 represent the unexposed sample area visible in the scan 

 

Fig. 50: Sample Analysis Diagram 
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window; Section 5 represents the exposed and eroded area of the sample. From here, a 

low-pass filter is applied to the scan data to eliminate noise from the sample, which 

would represent gradients in the data which represent less than 5% difference of the 

points next to that respective point. This process leaves a smoother profile for analysis. 

Each of these sections has their respective average depths recorded within the section 

boundaries. From here, the average of the unexposed area of the sample is found by 

looking at the average height of each side (with the left and right being represented by 

Sections 1-2 and 3-4, respectively) and then averaged. With the average height of the 

unexposed area found, we now subtract the average depth of Section 5 to get the overall 

depth of the sample caused by the beam exposure. This process is repeated for each 

sample scan and each result is then used to find the average depth for that sample. The 

standard deviation of these measurements are reported as the standard deviation of the 

population and are also reported to 1-σ. 

 The results of both the profilometry scans and the current data are then tabulated 

together to find the sputter yield for each sample, as per the methods presented in Section 

3.2.3. From these, the reported sputter yields are the average of all the accepted samples 

from the effort, with their standard error of the mean reported as 2-σ. 
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7. Project Results: Aluminum 

7.1. Overview 

One of the potential side effects of ion plume erosion is the exposure of the 

spacecraft’s vulnerable electronic components. These components are usually shielded by 

very thin layers of aluminized mylar (such as BoPET), a material that combines thin 

sheets of mylar and very thin-film aluminum, in order to protect the vital components 

from thermal stress and micrometeorite impact. Multiple layers of this material are 

usually used, as some aluminum layers of the material have been known to be at least 4.5 

µm thick[64]. Given the fact that for any spacecraft, there could be an aluminum layer 

that could only be hundreds of microns thick, it stands to reason that the electronics could 

be at a reasonable risk for erosion damage from the ion plume. 

As aluminum is a standard aerospace structure, it is a highly viable material to 

perform erosion testing on. However, with the exhaustive testing of aluminum already 

done[13] with xenon ion plumes, this effort can use these experiments to not only 

validate the testing methods for gathering the sputter yield data, but the data can also be 

expanded to look at higher energies that would encompass the energy regime of high 

specific impulse electric thrusters. In the section below, we will present the work 

Table 3: Aluminum Experimental Test Matrix 

Test Conditions, 1200 eV Test Conditions, 1500 eV 

1200 eV, 0º 1500 eV, 0º 

1200 eV, 30º 1500 eV, 30º 

1200 eV, 0º 1500 eV, 60º 
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Table 4: 1200 eV Sputter Data 

Sample  # 

Incidence 

Angle (º) 

Average 

Ion Rate 

(ions/sec) 

Ion 

Rate 

Std. 

Dev (%) 

Duration 

(min) 

Depth (µm) 

Sputter Yield 

(atoms/ion) 

6 0 1.31E13 6.72 15 1.24E-1 1.896 

7 0 1.67E13 5.11 15 1.63E-1 1.959 

9 0 1.08E13 5.75 40 2.87E-1 2.002 

2 30 3.96E13 9.57 10 2.34E-1 1.784 

5 30 2.30E13 4.30 8 2.18E-1 3.582 

6 30 1.54E13 2.46 15 1.82E-1 2.377 

7 30 2.71E13 3.88 15 1.23E-1 0.911 

1 60 1.47E13 0.98 15 5.06E-1 6.898 

2 60 1.01E13 1.54 15 3.71E-1 7.396 

 

performed on our aluminum samples from both the Tectra ion source, as well as earlier 

work from our SPPL-1 source. Table 3 contains the experimental test conditions for all 

the samples tested in the remainder of this chapter. 

7.2.  Experimental Results 

7.2.1. 1200 eV Experiments 

Although there has been published data at this energy level from Tartz[37], since 

these were the first experiments performed with this method, the prior datasets published 

were used as calibration data for the method used throughout this work. The following 

data represent the individual experiments that make up the 1200 eV data points, as 

represented in Table 4. 
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Table 5: 1500 eV Sputter Data 

Sample  # 

Incidence 

Angle (º) 

Average Ion 

Rate 

(ions/sec) 

Ion Rate 

Std. Dev 

(%) 

Duration 

(min) 

Depth (µm) 

Sputter Yield 

(atoms/ion) 

2 0 1.59E13 13.70 10 1.55E-1 2.933 

4 0 2.31E13 2.23 20 2.56E-1 1.670 

13 0 6.37E12 28.73 35 1.59E-1 2.147 

7 30 1.38E13 14.86 20 2.23E-1 2.435 

8 30 1.07E13 18.19 20 2.08E-1 2.924 

13 30 2.70E13 6.38 15 2.85E-1 1.753 

1 60 9.66E12 3.73 15 3.01E-1 6.254 

2 60 1.14E13 1.75 15 4.57E-1 8.093 

3 60 1.18E13 1.81 15 5.71E-1 9.745 

 

 With the exception of the 30º data points, most of the samples show small 

variations within the measurement sets themselves. It is also noteworthy that the sputter 

yields for the normal incidence data show very reasonable agreement with previously 

publish data. 

7.2.2. 1500 eV Experiments 

The following data represents a newly experimentally derived dataset for 1500 eV 

for this specific sputter interaction. This data was taken to expand the wealth of sputter 

data to energies that would represent a specific impulse of 5000 seconds for an 

electrostatic thruster. With the exception of the spread of the data for the 60º case, most 

of the data shows reasonable agreement and variation for these types of experiments. 
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7.2.3. Sputter Yield Data 

The datasets from the previous sections were averaged to produce the datasets 

presented in this section. This data represents the extent of the experimental data taken 

from the aluminum experiments and was then used to determine the theoretical models 

discussed in later sections. All error bars are representative of 2-σ. 

 

 The normal incidence sputter yield values for 1200 eV are in good agreement 

with both prior established experimental data from Tartz and the established Eckstein fits. 

The 30º and 60º incidence data for 1200 eV show agreement with Eckstein fits and Tartz 

data. The 1500 eV data points for all incidence angles show an expected increase that is 

consistent with the increase in incidence energy. Among each incidence angle each data 

 

Fig. 51: Aluminum Experimental Sputter Yield Data 

 

Figure 1 
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point increases linearly with energy, which is an expected trend (this will be more evident 

with the AR sputter data shown in later chapters). 

7.3. Sputter Yield Theoretical Fits 

7.3.1. Bohdansky Normal Incidence Fit 

With the normal incidence data, we can now derive the Bohdansky parameters for 

the normal incidence fit for all energies. Using the equations from Section 3.2.2, we are 

able to perform a parametric curve fit to find the appropriate parameters for the best 

normal incidence fit to the data. Utilizing the curve 

fitting tool from Matlab, we are able to find these 

parameters for the experimental data. 

Based on the best-fit Bohdansky curve, the 

parameters chosen were, in fact, close to the Tartz 

parameters, which was an expected outcome. There 

are only slight changes to these parameter based on 

this effort’s experimental data points, especially the new 1500 eV data point. The 

parameters Q and Eth from this effort were used to map the Tartz data points as well and 

they show excellent agreement with the established experimental data, as seen below in 

Fig. 52. 

Table 6: Al Sputter Model 

Parameters 

Parameter Quantity 

Q 20.67 

Eth 34.85 eV 

fsig 1.8 

R 0.4048 nm 
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7.3.2. Yamamura Angular Incidence Fit 

The angular fits for Aluminum are relatively straight-forward, since the only 

remaining parameter that is of importance is the fsig parameter available from the 

Yamamura text[57]. The angular fit shows reasonable agreement with the 30º and 60º 

data, although the latter shows an almost 20% disagreement with the theoretical curve. 

The results of the fit are shown in Fig. 53. 

 

 

 

 

Fig. 52: Aluminum Bohdansky Fit 
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7.4. Discussion 

As mentioned in the previous sections, the experimental data from this effort shows 

reasonable agreement with previously established data, although not without some 

interesting deviations, especially within the angular incidence fits. 

As shown in Fig. 52, the normal incidence data from this effort is within reasonable 

agreement with the Bohdansky model and a slightly higher sputter yield from the Tartz 

data for 1200 eV. This may be accounted for with the method by which the data is 

gathered to determine the sputter yield, as mentioned in Section 6.3. Likewise, the 1500 

eV data follows with the Bohdansky fit set by the trend line also with reasonable 

 

Fig. 53: Aluminum Angular Incidence Fit 
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Fig. 55: Aluminum Sputter Yield Comparisons between Yamamura fit and experimental results, 1200 eV 

(left) and 1500 eV (right) 

 

agreement. Also, as not entirely unexpected, 

the Bohdansky fit also under-predicted the 

experimental data by ~10%, which is well 

within acceptable published tolerances of fits 

involving noble gas sputtering[12]. 

 For the Yamamura fits of the 

aluminum data, the data tends to fit very well 

with the 30º incidence data and the 1200 eV 

data at this incidence is also comparable with Tartz[37]. However, while not entirely 

unexpected, there is a reasonable variance with the 60º incidence data, showing ~20% 

variance from the model. This can also be expected due to the noble gas sputtering effect 

for these type of modeling techniques. 

 

 

Fig. 54: Al Experimental-Theoretical 

Difference 
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Fig. 56: Aluminum Comparisons from fit to experimental data, 30º (left) and 60º (right) 

 
 Although the vacuum of space is a relatively cold environment, heating of the 

material is also a possible outcome for damage based on the effects of the ion beam. As 

such, melting the samples in the target area was a concern throughout the aluminum 

experiments. During preliminary experiments with aluminum, the sputter yields that were 

reported previously were of a significantly higher sputter yield than expected, especially 

at higher incidence angles.  

It was previously thought that this may have been due to measurement error, but 

upon further inspection, the material exhibited evidence of material flowing into the 

exposed area as well as burns on part of the sample. Although the melting point of 

Aluminum is 933 K, this will change based on the ambient pressure of the material’s 

environment, according to the Clausius-Clapeyron relation, as shown in Equation 

7-1[65]. Based on the vacuum chamber’s operating pressure during the experiments, the 

aluminum would have a melting temperature of 644 K, a significant drop from the 

standard melting point in 1 atm. For the purposes of our experiments, this would then 

limit the amount of current that can impinge on the sample during an experiment in order 

to prevent melting. 



93 

 

ln (
𝑃2

𝑃1
) =

−∆𝐻𝑣𝑎𝑝

𝑅
(
1

𝑇2
−

1

𝑇1
) (7-1) 

Equation 7-1: Clausius-Clapeyron Relation [63] 

 

 

 Although the experimental conditions had to be adjusted for this experimental 

effort, these types of considerations will not be taken into account on orbit. For close 

maneuvers, the particle flux could be as high as 1019 #/m2-s, which were the particle flux 

values at which some melting was reported on preliminary samples during experiments. 

Flux values of individual maneuvers will be reported in Chapter 10. 
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Table 7: Anti-Reflective Coating Experimental Test Matrix 

500 eV Test 

Conditions 

750 eV Test 

Conditions 

1000 eV Test 

Conditions 

1250 eV Test 

Conditions 

1500 eV Test 

Conditions 

500 eV, 0º 750 eV, 0º 1000 eV, 0º 1250 eV, 0º 1500 eV, 0º 

500 eV, 30º 750 eV, 30º 1000 eV, 30º 1250 eV, 30º 1500 eV, 30º 

500 eV, 60º 750 eV, 60º 1000 eV, 60º 1250 eV, 60º 1500 eV, 60º 

 

8. Project Results: Magnesium Fluoride 

8.1. Overview 

Magnesium Fluoride, as mentioned in earlier chapters, is an anti-reflective (AR) 

coating for space-rated solar panels. This material is very important for focusing certain 

wavelengths of light to increase performance on the solar cells. If the AR coating is 

eroded, the efficiency of the solar cells will be reduced by 3-5% because of changes in 

the transmission properties of the coating[52]. If the coating is completely eroded, the 

maximum amount of efficiency loss will be expected. As most space-rated panels are 

only 20-25% efficient, this is a significant drop in power just from erosion of the AR 

coating alone. This chapter will look into the results from the MgF2 erosion studies as 

well as the representative theoretical curves. The test matrix of these erosion experiments 

is listed in Table 7. Individual sputter data is contained in Appendix A.1. Magnesium 

Fluoride Samples. 
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8.2. Experimental Results 

The sputter yields, like the results from Section 7.2.3, show linear trending within 

their respective incidence angles and show reasonable agreement with that trending. The 

data also shows expected increases based on Yamamura-style trending. Further remarks 

about the data will be presented in their respective sections. All error bars are reported to 

2-σ. 

 

8.2.1. MgF2 Normal Incidence Data and Fit 

With the analysis methods used for determining the sputter yield, the sputter 

yields show reasonable agreement with each other. However, it is noticeable that the 

lower energy runs for the MgF2 samples the standard deviation of the sputter yield are 

 

Fig. 57: XeMgF2 Sputter Data 
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slightly higher than the energies above 1000 eV. This is due to a scanning issue based on 

the depths of the sample, as mentioned in Section 5.4.2. The normal incidence data also 

shows reasonable agreement, trend-wise, with the prior experimental results by Yalin. 

 

The Bohdansky fit for this 

data also shows reasonable 

agreement with the experimental 

data, with at least 75% agreement 

among all energies tested. This is 

within the 30% limit set out for noble 

gas sputter models. Consequentially, 

this fit also shows good agreement 

with the previous Yalin data at the 

lower incidence energies from that 

effort. The fit parameters are listed in Table 8. The strength of the fit is listed in Table 9. 

 

Fig. 58: MgF2 Bohdansky Fit (left) and Percentage Difference from Bohdansky Fit (right) 

 

 

 

Fig. 59: MgF2 Normal Incidence Fit with combined 

Sputter Data 
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Table 8: Magnesium Fluoride Fit Parameters 

Q Eth Zeff fsig R 

22.81 231.1 eV 10.4051 1.53 0.306 nm 

 

 

8.2.2. MgF2 Angular Incidence Data and Fit 

As with the normal incidence data, the angular data shows linear trending within 

each respective incidence angle and also shows reasonable Yamamura-like trending 

across incidence energies. For the most part, the 

error bars show reasonable agreement with ~6% 

across most data points with the exception of 750 

eV and 1250 eV at 30º incidence and 1250 eV 

and 1500 eV at 60º incidence. For the 30º 

incidence data points, these measurements may 

have been affected by burns on the surface of the 

samples or possibly poor scan quality. For the 60º  incidence data, they mildly exceed the 

model uncertainty by 1% and 10%, respectively, possibly due to fitting techniques, which 

will be discussed below. However, the data for the most part are in reasonable agreement 

within their respective experimental condition. 

As expected, the sputter yields increase with respect to both incidence energy as 

well as incidence angle. It is also interesting to note the significant increase in the sputter 

yield as the angle increases (i.e.: 500 eV’s sputter yield increasing almost by a factor of 6 

versus any similar change from aluminum). As shown in Fig. 57, it does decrease as the 

Table 9: MgF2 Goodness Parameters 

SSE 0.1094 

R-Square 0.9728 

Adjusted R-

Square 

0.9683 

RMSE 0.135 
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energy increases but not to a significant degree. This may be due to the compound nature 

of the material or the weakness of the bonds inside this material. 

 Also of note are the difficulties of fitting the angular data for MgF2 to the 

Yamamura curves based on the data from Fig. 57. As the accepted theory stands, the 

Yamamura equation is heavily dependent on a parameter known as fsig, as shown in 

Equation 3-12. This parameter is referenced from the text published by Yamamura for an 

individual sputter reaction (such as Xe Mg, for example). In the case of the compound 

targets in this effort, however, these parameters have trouble encapsulating the effect of 

the Yamamura curves, either vastly over-estimating or underestimating the experimental 

data. 

 To alleviate this, it is necessary to modify the Yamamura method by making fsig a 

new parameter that has to be found versus incorrectly referencing the parameters from 

 

Fig. 60: MgF2 Angular Sputter Model 
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Fig. 61: MgF2 Angular Sputter Data Comparisons, 30º (left), 60º (right) 

 

 

Fig. 62: MgF2 Angular Fit Comparisons, 30º (left), 60º (right) 

Yamamura. Converting fsig into a new fitting parameter, we are able to somewhat fit the 

angular data of MgF2. The angular model, as shown in Fig. 60, shows reasonable 

agreement with experimental data, with the exceptions of 500 eV at 30º incidence and 

1500 eV at 60º incidence. This may be due to the fitting method for fsig in addition to the 

difficulty for gathering the 500 eV sputter data at 30º incidence. Further discussion of 

these fitting difficulties is located in Appendix B. 
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9. Project Results: Indium Tin Oxide (ITO) 

9.1. Overview 

As with Magnesium Fluoride, Indium Tin Oxide (ITO) is an anti-reflective (AR) 

coating that is capable of focusing certain wavelengths of light in order to augment solar 

cell efficiency in orbit. Like MgF2, ITO is space-rated material for solar cell coverglass, 

but has no published sputter data. One of the goals of this work is to present a set of data 

to the engineering community in order to talk about potential material choices for space 

mission applications. And, as with Chapter 7 and 8, the experimental results presented in 

this chapter will be combined with their respective theoretical fits. The test matrix for 

these experiments is contained in Table 7. Individual sputter data is contained in 

Appendix A.2. Indium Tin Oxide Samples. 

9.2. Experimental Results 

  

 

 

 

 

 

 

 

 

Fig. 63: XeITO Sputter Data 
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 As with the MgF2 data, the data 

shows linear trending among its respective 

incidence angle. It also shows the appropriate 

sputter yield increases as the incidence angle 

increases. The sputter yields are considerably 

larger than MgF2 for all testing points, as 

well. To compare, the sputter yield at 500 eV 

is comparable to the sputter yield at 1500 eV 

for a normal incidence MgF2 sample. This means that ITO is far less resistant to sputter 

than MgF2 overall. As expected, this also holds true for the other incidence angles, as 

well. All error bars for Fig. 63 are 2-σ. 

9.2.1. ITO Normal Incidence Data and Fit 

The data shown in Fig. 63 shows excellent agreement with the linear trend, with very 

small errors (~20% or less at 2-σ), well within the impingement model limits as 

 

Fig. 64: Comparison of ITO and MgF2 Sputter 

Yields, Normal Incidence 

 

 

Fig. 65: ITO Bohdansky Fit (left) and Percentage Difference from Bohdansky Fit (right) 
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Table 10: ITO Fit Parameters 

Q Eth Zeff fsig R 

60.21 105.1 45.5061 1.25 1.012 nm 

 

Table 11: ITO Goodness Parameters 

SSE R-Square 

Adjusted R-

Square 

RMSE 

0.4182 0.9433 0.9243 0.3733 

 

mentioned by Eckstein[12]. This agreement also extends to the Bohdansky fit of the data, 

as all data is within ~15% of the expected theoretical fit. The fit parameters and goodness 

metrics are listed in Table 10 and Table 11, respectively. 

 In relation to the chart from Fig. 64, the vast difference in sputter yields could 

possibly be explained by a number of factors. The most obvious, according to the 

theoretical fits, have to be the difference in threshold energy. As described in Chapter 

3.2.2, the threshold energy is the energy at which the sputter yield starts to become 

significant and increases significantly in magnitude. ITO’s threshold energy is 54.5% 

lower than MgF2, as shown in the theoretical fit with evidence from the normal incidence 

sputter data from both this work and the data from Yalin[52]. Also, the density of ITO is 

also considerably higher than MgF2, which would mean there are more atoms per volume 

and, thus more atoms to sputter away per incident ion.  
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9.2.2. ITO Angular Incidence Data and Fit 

The angular incidence data shows its typical trending as seen in Chapter 8.2.2, 

with linear trending within the respective incidence angle and the typical increases in the 

data as the incidence angle increases. The error bars reported all show tight agreement 

with the individual measurements used, with the highest set of error bars approaching 

~20% for 1000 eV at 60º incidence, well within the tolerances for the sputter estimation 

and modeling methods as mentioned in previous sections. This data is much higher than 

the MgF2 angular data, as expected due to the significant increase from the normal 

incidence data as mentioned in the previous section. However, the sputter yields reach as 

high as 19 atoms/ion, which is significantly higher than the yields experienced by MgF2. 

As with the MgF2 data, the Yamamura fit for ITO required using fsig as a fit parameter. 

With the appropriate parameters mentioned in Table 10, the fit is displayed in Fig. 66. 

 

 

Fig. 66: ITO Angular Sputter Model 
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 As shown in Fig. 67 and Fig. 68, the angular model shows reasonable agreement 

within the 30º incidence data with the exception of the 500 eV data point, which is 

outside of the 30% boundary for noble gas sputtering. However, as mentioned in Chapter 

8.2.2, the fsig fitting may be partly responsible, as a similar issue has occurred with the 

MgF2 data at this particular energy level, as well. With the exception of this particular 

experimental condition, all others are within 20% tolerance of the model. The 60º 

incidence shows excellent agreement with the model, with all test points within 10% of 

the Yamamura fit, although the model is slightly under-predicting the experimental data. 

 

Fig. 67: ITO Angular Data Comparisons, 30º (left), 60º (right) 

 

Fig. 68: ITO Angular Fit Comparisons, 30º (left), 60º (right) 
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10.  Formation Flight Erosion Study 

10.1. Overview 

As mentioned in Chapter 0, plasma plume erosion from spacecraft can inflict multiple 

types of damage to a spacecraft surface, most notably material erosion from direct 

impingement. Although a variety of missions try to design around plume impingement, 

there may be situations that arise that may not be able to avoid direct ion beam contact 

with another spacecraft. And, unlike CEX exposure from the plume, direct impingement 

from the plume is much more energetic and has the capability to leave a lasting impact on 

the surface of the spacecraft. 

Under laboratory conditions, direct plume impingement is a simple matter and 

erosion can occur to a certain degree of predictability as long as the testing conditions are 

known. However, unlike the linear evolution of sputter from direct plume impingement, 

there are a few other factors to consider in orbit. The geomagnetic field at a given orbital 

altitude, the plume density, and the formation distance are just some of the factors that 

can affect the plume impingement properties of a formation. 

This study aims to utilize a rudimentary model to observe the evolution of erosion 

effects of plume impingement while in orbit performing a representative maneuver. It 

will provide an estimate for depths of erosion caused by the impingement as well as how 

the environmental factors affect the plume’s propagation and, ultimately, the erosion 

profile expected for a certain maneuver. The goal of this study is to provide general safe 

boundaries for spacecraft to operate within close formation. 
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Fig. 69: Study Spacecraft in Leader-Follower Formation 

 

10.2. Study Parameters 

Although there are myriad orbital conditions that are of interest for this study, 

ultimately there were three types of orbital conditions that were considered: LEO, GEO, 

and Sun-Synchronous. Each of these orbits have very unique characteristics. LEO has the 

distinction of not only being the most popular orbital region of choice for most mission 

profiles but also having the highest geomagnetic field influence on the plume due its 

orbital altitude. Meanwhile, Sun-Synchronous orbit is of interest because of the number 

of high-profile formation flight missions taking place there, such as the A-Train satellite 

constellation. Finally, GEO is also an interesting profile for the orbital study as the 

geomagnetic field has very little influence at these distances, but they can possibly still be 

a factor. 

The study will look at two spacecraft in each of these orbital scenarios, with them 

being in a leader-follower formation. The leader-follower formation, the most generic 

spaceflight formation, also presents the most direct possible path for the plume to follow, 

if unimpeded. This formation will be observed with a range of ISD’s from 50-1000 m. 
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Table 12: Formation Flight Study Parameters 

Orbital 

Altitude 

 

Orbital 

Inclination 

(deg) 

Formation 

Distance (m) 

Beam Energy 

(eV) 

Plume Density 

(#/m3) 

LEO: 400 km 

0-90 in 15 

increments; 

 

50, 100, 250 

500,1000 

500, 1000, 1500 

1.47x1018, 

2.08x1018, 

2.94x1018, 

3.60x1018 

Sun-Sync: 705 

km 

98.14 

50, 100, 250 

500,1000 

500, 1000, 1500 1.47x1018 

GEO: 35786 

km 

0 

50, 100, 250 

500,1000 

500, 1000, 1500 1.47x1018 

 

This study will also look at the effects of the plume’s kinetic energy (ranging from 500-

1500 eV) on the erosion of the surfaces. 

As one would expect, the plume properties have a significant impact on the erosion 

profile of the target. As such, we have established parameters for the plume based on the 

plume density, derived from the BHT-HD-600 Hall thruster nominal operating 

parameters from Roberts[2] as well as Ekholm[66], which is 1.47x1018 #/m3. This was to 

ensure that the test case of the model produced similar exposure results to the 

aforementioned efforts. The density, except when observing density effects on a 

particular orbit, will remain constant throughout the study. The summarized study 

parameters are located in Table 12. 
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After establishing the parameters of the beam and the orbit, an orbital simulation is 

performed, which looks at the propagation of the plume and the potential impact on the 

follower spacecraft. After looking through an entire orbit, the model calculated the 

number of hits on the spacecraft and calculates the total exposure time to the follower 

spacecraft. The data output from this model also takes the geomagnetic environment 

around both spacecraft into account. With this and the knowledge of the beam parameters 

at the target, we can then estimate the erosion seen by the spacecraft through a simple 

erosion model with the time and apparent fluence of particles on the target. For further 

detail on both the erosion and orbital models, see Chapters 3 & 4, respectively. 

10.2.1.  Study Assumptions 

Although the model used for this study has been described in detail in Chapter 4, 

there are also additional assumptions for the purposes of this analysis. The largest 

assumption to take into account is that the Earth is inertially fixed for the purposes of this 

model. That means that although the magnetic pole is used within this model, the 

magnetic pole is also fixed due to this assumption. Therefore, the geomagnetic field 

environment will not rotate as the spacecraft completes its orbit; this will introduce small 

variations in the local field relative to what would have been seen if the Earth’s rotation 

was included. The degree of the variation would increase with each additional orbit. This 

approximation will have the greatest (but minor) impact on the Sun-sync orbits, a lesser 

impact on LEO orbits, and practically no effect on GEO orbits. Another assumption made 

for the geomagnetic field is that the field is approximately the same around both the 

leader and the follower spacecraft. This may not normally be the case for larger 
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√(𝑟⃗ 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 − 𝑟⃗ 𝑝𝑙𝑢𝑚𝑒)
2
+≤ 𝑡𝑜𝑙 + .004 [𝑘𝑚] (10-1) 

Equation 10-1: Plume Interaction Criterion 

 

formations, but for the ISD’s observed within this effort, the difference between the 

magnetic fields are negligible. 

As for the interaction criterion for the study, recall that the follower spacecraft is 

given a sphere of influence (SOI) involves a base interaction sphere for the spacecraft 

with an expanding diameter based on the plume width. This width is the expected width 

of the plume if it experienced purely ballistic expansion all the way to the expected ISD. 

The plume itself is considered to propagate ballistically with a 15º half-angle. A hit is 

considered if the plume intersects with the SOI of the spacecraft. This is determined if the 

difference of the distance between the position of the follower spacecraft (also 

represented as a center of mass) and the plume’s center-of-mass is less than the tolerance 

factor and the representative radius of the spacecraft, as represented in Equation 10-1. For 

this study, the representative spacecraft SOI radius is 4 m, and the cross-sectional area for 

this spacecraft is based on this radius. This area is also split into three equal parts: one 

representing the aluminum structure and the other two representing the panels. It is 

important to note that while the area of the panel is 1/3 of the cross-sectional area in 

normal incidence, it is appropriately modified when entering an angled incidence, 

reducing the cross-sectional area accordingly. 

 In relation to the plume interaction with the spacecraft, the plasma parameter β 

has a huge role to play in determining the plume’s direction and other properties with 

respect to plume impingement. As mentioned in Section 2.3, β is the local ratio of plasma 

pressure to magnetic pressure. The plasma pressure, as shown in Equation 2-5, consists of 
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the electron and ion pressures as well as neutral pressure. For the purposes of this work, 

an electron temperature of 1 eV (or 11,604 K) was used and the ion temperature is 

represented as 10% of the electron temperature. This is reasonable, since in an electric 

thruster plume, the ions are sufficiently immobile compared to the electrons. It is 

important to note that the neutral pressure has been neglected for this analysis. However, 

due to the low temperature of the neutrals (~300 K) combined with the relatively low 

density of neutrals in most orbits, this should be a reasonable assumption. 

Another important assumption to note is the rotation of the solar arrays during the 

orbit. Due to the simplicity of the model, the solar arrays will be fixed for all time during 

the analysis. However, we are instead looking at the best and worst case scenarios for 

panel erosion on orbit. Best case scenarios will keep the solar panels fixed at normal 

incidence throughout the orbit; worst case scenarios will keep the solar panels fixed at a 

60º incidence angle throughout the orbit. While this is highly unrealistic due to the 

constantly changing position of the spacecraft in relation to the sun during most orbits, 

this effort’s main goal is to find the potential amount of sputter in each of the orbits 

observed. 

Finally, all orbits are assumed circular, with both argument of latitude and true 

longitude at epoch equal to 0º. Note that argument of perigee and true anomaly are not 

defined for circular orbits, and the right ascension is not defined for equatorial orbits.  
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10.3. Test Case Results 

As mentioned above, the leader-follower formation 

from the effort by Roberts[2] was utilized to test the 

accuracy of the simulation efforts for this work. According 

to Roberts, the C-TOS leader-follower formation 

experienced particle impacts to the spacecraft for 

approximately 16-18 minutes during its one orbital maneuver within one portion of the 

orbit according to Fig. 70. It is also noteworthy to indicate that they expect the CEX 

impingement to have a higher flux of particles to the follower than from direct 

impingement itself, yet will 

contribute very little to erosion. 

The simulation from this effort, 

shows no correlation with the prior 

work. The simulation shows that the 

plume makes no contact with the 

follower spacecraft. Based on the 

magnetic field model shown in 

Chapter 4.2, the magnetic field 

strength of the C-TOS orbit is 

considerably strong, fluctuating between 18-35 µT as shown in Fig. 71. This field 

strength provides a strong magnetic braking effect when the β transition effect occurs. 

Table 13: C-TOS Leader-

Follower Parameters [2] 

Altitude 1100 km 

Inclination 63.4º 

ISD 500 m 

 

 

Fig. 70: C-TOS Impingement Flux [2] 
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Fig. 71: C-TOS Geomagnetic Field Environment 

 

Fig. 72: Plume Velocity scenarios in C-TOS orbit 

 This braking effect has an effect on the overall velocity of the plume as it 

propagates from the leader spacecraft. After the β transition effects are felt, the plume 

velocity is affected based on the local 

geomagnetic field vector. Not only 

does this serve to reduce the speed of 

the plume, it also changes the 

direction of the plume based on the 

local field vector. An example of the 

contrasting plume velocities are 

shown below in Fig. 72. 

 From the strength of the plume velocity, it is easy to see that the speed is clearly 

dictated by the strength of the magnetic field. But, because of the interference of the 

magnetic field, the plume also takes its direction, as well, as indicated in Equation 4-18. 
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Fig. 73: C-TOS Plume Divergence Angle vs. True Anomaly 

 

 

Fig. 74: C-TOS Plume Flight Path @ θ=0º 

 

This interference not only introduced the braking effect shown above, but it also turns the 

plume into the direction 

of the local magnetic 

field. Because of this, 

the plume as shown in 

this test case has at least 

25º divergence from the 

plume centerline, as 

seen in Fig. 73. 

This divergence, in fact, can be clearly seen in the simulation as the leader-follower 

formation is modeled in orbit. As seen in Fig. 74, the plume (the red line) propagates 

normally for a short distance before the β transition point. After the transition, the plume 
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Fig. 75: LEO Geomagnetic Field Environment 

 

then diverges based on the local magnetic field vector as shown in Fig. 73. The plume, as 

shown, never intersects the sphere’s SOI. It is noteworthy to mention that although the 

plume trajectory changes abruptly as the β transition occurs, this may be due to the lack 

of knowledge of the transition region as β nears 1. The change of direction is still 

expected, however, and does not change the overall result of this simulation. 

10.4. LEO Case Study 

 Low Earth Orbit (LEO) is home to many Earth observation missions, and as such, 

could become a focal point for formation flight missions of all types in the near future. 

To this end, a comprehensive study was performed for a range of orbital inclinations as 

well as ISD’s, as shown in Table 12. The orbital altitude chosen (400 km) coincides with 

the International Space Station (ISS). This section will work to summarize the results of 

the case study, with the majority of the data available in Appendix A.3. LEO Erosion 

Study Datasets. For reference, unless otherwise noted, the plume density used for these 

observations is 1.47x1018 #/m3. 

10.4.1.  Plume Exposure Observations 

Because of the strength of the 

geomagnetic field environment 

(shown in Fig. 75) at this altitude, 

there is very little erosion reported for 

the majority of orbital inclinations 

until i=75º. From here, although the 

field strength is much higher on 
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Fig. 76: Exposure Time vs. Formation Distance w.r.t. Density 

 

average, there are also very large fluctuations of the field throughout the orbit. But, due to 

the alignment of the geomagnetic field, the plume exhibited by the leader spacecraft fails 

to propagate beyond a small distance from the spacecraft, preventing any erosion at most 

inclinations, even at ISD’s of 50 m. 

The first noteworthy observation is the variance of the exposure properties of the 

plume with respect to the change in density. As Equation 2-5 would suggest, the plasma 

density is directly proportional to β and, as such, plays an important role in determining 

the interaction properties of the plume to the follower spacecraft. This is verified by 

looking at the impact of plume density on the exposure times at a single orbital 

inclination, as shown in Fig. 76. As expected, the transition point from complete 

exposure to partial exposure begins to shift farther away from the leader spacecraft at 

higher plume densities. 
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Fig. 77: Exposure Time vs. Formation Distance w.r.t. Density Magnitudes 

 

 

It is worth noting that the BHT-HD-600, which served as the basis for the 

assumed plume density, is a 600 W Hall thruster designed for only 36 mN of thrust[65]. 

As shown, just increasing the density by a factor of 2.5 extended the full exposure 

transition point by 15 m (150%). Therefore, it would stand to reason that high thrust EP 

systems would pose a much higher risk for close formation spaceflight missions, which is 

a reasonable expectation due to higher plume densities. This trend is also in agreement 

with the β modelling trends, as shown in Section 4.2.1. 

However, at these density levels, the full exposure transition point still stays 

relatively close to the spacecraft. With this in mind, if we examine the behavior of the 

transition point as we increase the magnitude of the density, we find that the transition 

point moves much further towards the follower spacecraft, as shown in Fig. 77. With the 

first and second magnitude increases, we see a 500% increase in transition distance at 

1.43x1019 #/m3 (50 m) and a 1500% increase at 1.43x1020 #/m3 (150 m), respectively. A 

density level of 1019 is consistent with another EP system, the SPT-100, a 1.35 kW 
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Fig. 78: Exposure Time vs. Formation Distance w.r.t. Inclination, n=1.47E18 #/m3 

 

thruster[36]. At the highest magnitude analyzed, if we assume that all the other thruster 

characteristics are constant, then we can assume that the beam current will be increased, 

as shown in Equation 4-21. With this in mind, the density output would result in a tenfold 

increase in the power of the thruster to 13.5 kW, which puts it in the operating regime of 

the Pratt & Whitney T-220HT in both thrust current and output power[67].  

Another noteworthy observation is the increase in exposure time with respect to 

the orbital inclination. As mentioned above, orbital erosion at the ISD’s within this test 

show no erosion until a 75º inclination. However, at 75º and 90º inclinations, very small 

exposure times were reported for the leader-follower formation. This is due to the 

geomagnetic field environment mentioned above. Although the strength (and fluctuation) 

of the environment increase with the higher inclination, the exposure times as a whole 

increase slightly. Both inclinations show exposure times that are inversely proportional to 

the ISD. This is somewhat expected, as the density also decays in this fashion as the 

plume propagates from the leader spacecraft. However, the higher inclination also shows 

a higher minimum of exposure time, which is expected due to the weaker magnetic field 
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at some portions of the orbit versus the lower inclination. These trends are shown in Fig. 

78. 

With the low plume exposure times in LEO, it is reasonable to assume that these 

incidences of erosion occur in small regions of the orbit where the magnetic field is 

weakest. These regions, according to the simulation, also indicate varying degrees of 

energy loss of the plume, which will be discussed in a later section. 

10.4.2.  LEO Erosion Results 

With the plume interaction properties of LEO determined, we must look at the 

actual erosion characteristics from 

these orbital conditions. As expected, 

the trend of the erosion depths show 

an increasing linear trend with respect 

to both energy and time exposed. 

Likewise, at higher ISD’s, the 

follower spacecraft experiences less 

erosion due to the quadratic drop in 

plume density. As mentioned above, 

there is no erosion reported for LEO with the exception of the higher orbital inclinations, 

specifically 75º and 90º. Here, the orbital conditions allow for small windows of plume 

interaction that result in surface erosion on the follower spacecraft. 

 As for the levels of erosion themselves, most cases show generally light erosion 

of aluminum, with the maximum erosion occurring at a beam energy of 1500 eV and ISD 

 

Fig. 79: LEO Al Sputter Data, i=75º 
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of 50 m for all LEO orbital conditions, with a depth of approximately 30 nm based on the 

structural cross-section mentioned in Section 10.2.1. It is important to note that a layer of 

BoPET is 4.5 µm thick, so erosion of one layer of the BoPET sheath would take 

approximately 1500 orbits. As with all of the depths reported in this work, this depth is 

representative of one complete orbit with constant thrust. 

 Likewise, the AR coatings of the solar cells, in most of both the best and worst-

cast scenarios, show minor amounts of erosion for the majority of the orbits that show 

erosion. However, in the best and worst case scenarios, there are some orbital parameters 

that show AR coating failure in one orbit. These come from a beam energy of 1500 eV 

and an ISD of 50 m. At these conditions, MgF2 erosion ranging from 55 to 130 nm is 

observed in the best and worst cases, respectively; similarly, ITO shows erosion depths of 

411 and 754 nm for the best and worst cases. This, according to Yalin[52], would 

significantly affect the transmission properties of the coating, thereby experiencing a 

significant drop in power to the solar cells. And, as expected from earlier chapters, MgF2 

is significantly more resistant to plasma erosion than ITO in all cases, as the erosion is 

practically an order of magnitude higher in all cases when exposed to the same flux 

levels. It is also noteworthy that due to the higher erosion rates of ITO, there are more 

orbital conditions in which significant damage or outright failure of the AR coating 

occurs. Represented in Fig. 80 below shows the representative trends of the AR 

sputtering. 
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Fig. 80: LEO AR Sputter Data, i=75º-MgF2 (right) and ITO (left) 

 

 

Fig. 81: Sun-Sync Geomagnetic Environment 

 

 The remainder of the sputter data covering all scenarios can be located in 

Appendix A.3. LEO Erosion Study Datasets. 

10.5. Sun-Synchronous Erosion Results 

Sun-Synchronous orbits are a unique case within this study due to the fact that, unlike 

the other two orbital conditions, this type of orbit always has the solar panels locked in a 

90º incidence, where sputter of the AR coating is not possible. It is also unique due to the 

significant variation of the magnetic field for this set of orbital conditions. While there 

are many Sun-Sync orbits that can be observed, this particular orbit observed belongs to 

the A-Train[68] constellation, which has many satellites in leader-follower formations, 
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Fig. 82: Sun-Sync Sputter Depth Data 

 

but at distances much larger than those observed in this study. 

 As shown with the LEO study, the magnetic field oscillation does increase 

proportionally to the orbital inclination. As such, due to these high oscillations, there are 

small pockets of exposure at higher ISD’s that also show energy loss at these locations. 

Overall, the erosion environment is similar to the environment found in LEO at 90º 

inclination. The sputter depth levels are also very similar, but due to being in a higher 

orbit than from the LEO study, the orbital period is slightly longer, resulting in slightly 

higher levels of erosion. The sputter depths displayed show the expected quadratic fall in 

sputter depth as the flux falls due to the distance from the beam exit, as shown in Fig. 82. 
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10.6. GEO Erosion Results 

 As noted in the earlier sections, the 

geomagnetic field weakens as the orbital 

altitude increases, resulting in a more 

dangerous impingement environment than 

can be seen at lower altitudes. However, 

due to orbital inclination (0º inclination), 

the magnetic field fluctuations seen will be 

similar to that of LEO at that inclination, 

but with a substantially lower field magnitude (0.4% of LEO-400 km). With these 

conditions in mind, β is expected to be significantly larger than the others in the study 

due to the weakness in the geomagnetic field. 

 Because of the orbital conditions, the erosion profile remains constant for all 

ISD’s examined at this orbital altitude. With β>>1, the beam constantly propagates and 

does not get overcome by the local magnetic pressure in this region. Furthermore, 

because of the constant thrusting throughout one orbit during this maneuver, the erosion 

threat is very high, with the orbital period being approximately 24 hours. The erosion 

data shows, as expected, very significant levels of erosion for all materials, reaching as 

high as ~79 µm of Al erosion, 0.15 mm (best case) for MgF2, and 1.2 mm (best case) for 

ITO for plume exposure at 1500 eV and 50 m ISD. Even at best-case scenarios for the 

AR coatings, at these levels the 100 nm thick AR coatings will be completely sputtered 

away and the coverglass will begin to erode; this will result is a significant loss in 

 

Fig. 83: GEO Geomagnetic Field Environment 

 



123 

 

efficiency of the solar panel. The erosion results will be contained in Appendix A.5. GEO 

Erosion Study Datasets. 

10.7. Energy Loss Observations 

 As mentioned in the previous sections, there were multiple instances throughout 

the study in which there were regions of the orbit in which the plume still managed to 

impinge on the follower spacecraft, but at slightly reduced energy levels than those 

normally held by the plume. These regions, although odd at first, can be explained by the 

interactions of the magnetic field with the velocity vector of the plume. As shown in 

Equation 4-18, the velocity vector when β<1 is dependent on the dot product, or the 

projection, of the velocity, 𝑣 , on the magnetic field vector, 𝐵⃗ . With this in mind, these 

energy loss regions all take place where β<1; therefore, these energy loss regions are the 

direct result of magnetic braking due to the interaction of the field with the velocity. It is 

also reasonable to assume that within these regions, there would be a sufficiently low 

magnetic field to allow for the beam to impinge on the spacecraft. 

 For example, one set of orbital conditions that this energy loss phenomenon 

occurs at is during Sun-Sync at an ISD of 500 m. Here, there was a very small amount of 

exposure to the plume during the orbit. This exposure was shown to occur both in 

instances where there was a very weak magnetic field as well as a β slightly less than 1. 

As reasoned above, the energy loss occurs also during the minima of the magnetic field 

strength experienced through these orbital conditions. This also occurs at the 1000 m 

ISD, but with even less exposure. This is shown in Fig. 84. 
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Fig. 84: Sun-Sync Velocity Vector, ISD 500 m, Energy: 1500 eV (right); Velocity X-Axis (top left), Velocity 

Y-Axis (mid left), Velocity Z-Axis (bottom left) 

 

 As reasoned above, the energy loss is a result of the geomagnetic field interaction 

with the ion plume. When β<1, the plume velocity becomes a product of the projection of 

the velocity vector on the geomagnetic vector and the geomagnetic vector itself. As a 

result, when β<1, the plume velocity essentially becomes directly proportional to the 

geomagnetic field. This will result in reduced velocities when β<1 if the vector allows for 

direct impingement to the follower spacecraft. It is also observed that during these 

instances of impingement, while the magnitude of the velocity is slightly reduced, the 

majority of these instances show a near-zero velocity along one axis, as shown in Fig. 85. 

 

Fig. 85: Sun-Sync Magnetic Field Strength and Impact Velocity vs. Orbital Position (left); Sun-Sync Beta 

and Impact Velocity vs. Orbital Position (right) 
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Fig. 86: LEO Magnetic Field Strength and Impact Velocity vs. Orbital Position (left); LEO Beta and Impact 

Velocity vs. Orbital Position (right) 

 

 Like in the Sun-Sync case, similar results were shown at LEO in similar 

conditions, as well. Unlike in Sun-Sync, however, the erosion occurs at slightly higher 

magnetic field strength, as shown in Fig. 86. This means that these energy loss regions 

occur only when the magnetic field vector allows for the impingement in addition to the 

strength of the field.  

10.8. Application of Erosion Results 

Now that the erosion properties of the plume have been observed in many orbital 

scenarios, we must utilize this data to analyze how spacecraft (and their individual 

components) would hold up to plume impingement over extended periods of time. By 

establishing these performance trends, we can then apply this information to potential 

mission designs and assess the risk of these components during the extent of a 

spacecraft’s primary mission. This section will look at the erosion trends over extended 

periods of time and how they will affect a typical five-year mission profile. For reference, 

a table with the appropriate material parameters is shown below. 
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𝑁𝑜𝑟𝑏𝑖𝑡𝑠 =
𝑑𝑙𝑎𝑦𝑒𝑟

𝑑𝑒𝑟𝑜𝑠𝑖𝑜𝑛
(10-2) 

Equation 10-2: Orbits until Failure 

Table 14: Formation Failure Study Material Parameters 

Material 

Representative Thickness 

(nm) 

Aluminum (Al) 4500 

Magnesium Fluoride (MgF2) 100 

Indium Tin Oxide (ITO) 100 

 

10.8.1.  Failure Trends 

With access to the single-orbit erosion data established from the previous 

sections, we can now apply this data to look at the failure trends of the observed materials 

under constant plume impingement from the leader spacecraft. This can be performed by 

looking at the ratio of the material thickness to the erosion depth caused by the single 

orbit erosion, as shown in Equation 10-2. 

This ratio can tell us Norbits, the number of orbits until the failure of one layer of the 

material under observation. Because of the nature of the ratio, the number of orbits tends 

to rise quadratically, as the erosion depth falls quadratically with distance, as shown from 

the data in previous sections. 

10.8.1.1. LEO Failure Trends 

Using the above technique, we can observe the failure trends established by the 

sputter in LEO from Section 10.4.2. Observing the sputter on Aluminum, it is reasonable 

to assume that under the constant thrust conditions of the erosion study, it will take a 

considerable amount of time to erode one full layer. This assumption is confirmed in Fig. 
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Fig. 87: LEO Orbits until Failure, Aluminum 

 

87. This graph shows, as expected, that the erosion of the material decreases quadratically 

as the formation distance increases. This also shows that the slight increase in exposure 

time based on inclination introduces a near order of magnitude change in failure limits.
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Fig. 88: LEO Orbits Until Failure, MgF2 Best Case (left) and Worst Case (right) 

 

Fig. 89: LEO Orbits Until Failure, ITO Best Case (left) and Worst Case (right) 

 

 Likewise, as with the Al erosion data, the erosion data for the AR coatings also 

follows these erosion trends. For both of these materials, the orbits until failure are 

drastically different mainly due to the significant difference in the thickness of the AR 

coating versus the Al mono-layer. However, when the results are observed solely 

amongst this class of materials, the study shows that MgF2 lasts an order of magnitude 

longer than ITO solely due to the sputter yields of the material. 
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Fig. 90: Sun-Sync Orbits Until Failure, Al 

 

10.8.1.2. Sun-Synchronous Failure Trends 

For the Sun-Sync orbital cases, similar failure trends are shown. Due to the 

inclination of these orbits, more geomagnetic protection is received than in LEO at 90º 

inclination. As such, the aluminum will receive higher protection at these orbits, despite 

the longer exposure times due to the orbital period. These results are shown in Fig. 90. 

 

10.8.1.3. GEO Failure Trends 

As with the other two orbital altitudes observed, the failure trends at GEO also 

share similar trending. However, with the significant reduction in strength of the 

magnetic field versus the previous altitudes, the exposure threat is much higher, with 

some materials not even lasting the full orbit under constant thrust. In addition to the 
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Fig. 91: GEO Orbits Until Failure, Al 

 

 

 

Fig. 92: GEO Orbits Until Failure, MgF2 Best Case (left) and Worst Case (right) 

 

 

weakness of the magnetic field, there is also the increased orbital period to consider, as 

well. The results are shown below. 
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Fig. 93: GEO Orbits Until Failure, ITO Best Case (left) and Worst Case (right) 

 

 

10.8.2.  Five-Year Mission 

One of the primary applications of this research is to inform decisions when it 

comes to developing a design that can last throughout a spacecraft’s primary mission. 

With this in mind, we can design a sample mission using these failure estimates to come 

up with a potential design that can last throughout the mission life-cycle. For this 

analysis, we will assume a pair of spacecraft in a leader-follower formation with a 

primary mission duration of five years. During the mission timeframe, we will only 

assume that the spacecraft will have to make maintenance maneuvers throughout the 

duration that will directly impinge on the follower spacecraft. Therefore, unlike the 

analysis from the previous sections, we will not assume constant thrust, but instead 

assume the total amount of thrust time equivalent to the delta-v required for these 

maneuvers. We will also use the appropriate parameters from the previous formation 

study. Finally, the worst case scenario for the solar panel erosion will be assumed. 

Each orbital altitude utilizes different orbital maneuvers for spacecraft to maintain 

their position. For LEO, the primary maneuvers that will be required are for drag 
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Table 15: Five-Year Sample Mission Maintenance Orbits 

Beam Energy (eV) 

LEO Maintenance 

Orbits 

Sun-Sync 

Maintenance Orbits 

GEO Maintenance 

Orbits 

500 750 3.9 56.5 

1000 375 1.93 28.05 

1500 250 1.3 18.7 

 

mitigation purposes in order to maintain the altitude required for the mission. Sun-Sync 

orbits usually require maneuvers for inclination maintenance to maintain their orbits. 

Also, one of GEO’s main maneuvers is E-W stationkeeping to maintain the vehicle’s 

position within the orbit. The annual delta-v requirements for LEO and Sun-Sync/GEO 

are 25 m/s and 2 m/s, respectively[69]. In order to estimate the duration of the 

maneuvers, we will use a spacecraft mass of 2000 kg. 

Based on the annual delta-v budgets required for maintenance maneuvers, we can 

determine the total number of maintenance orbits required throughout the entire mission. 

It is important to note that “orbits” in this context may not necessarily be full orbits, but 

the number of orbits that represent the amount of time for thruster firings throughout the 

entire mission. Because of the nature of the orbit, LEO requires the highest thrust time, 

requiring at least 250 orbits worth of thrust time. GEO required the second-most 

maneuvers, followed by Sun-Sync. The table representing the maintenance orbits is 

shown in Table 15. 
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Table 16: Five-Year Sample Mission Design Results 

Orbit Materials ISD (m) # of orbits 

Years until 

Failure 

LEO 75º Al/MgF2 500 591 (1500 eV) 11.8 

LEO 90º Al/MgF2 >1000* 555 (500 eV) 3.7 

Sun-Sync All 50 79 (1500 eV) 21.1 

GEO Al/MgF2 >1000* 0.3 (500 eV) 0.4 

Note: If “>1000*” is listed, then the minimum distance for this altitude is beyond 1000 m, the maximum 

distance tested in this study. The # of orbits presented for those orbital altitudes are those if the ISD 

were 1000 m. 

 The results from this study show that for these missions, the limiting factor of the 

designs are not the Al layers within the multi-layer insulation, but the AR coatings. This 

is an expected result due to the thickness of the AR coating applied to the solar cells as 

well as the higher potential for angled incidence exposure. Another expected result is that 

the lower orbital altitudes provide a much longer mission life due to the geomagnetic 

protection from Earth. Likewise, GEO is the hardest altitude to design for, based on the 

lack of geomagnetic protection and amount of thrust time required. The results are shown 

in Table 16. 
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11.  Conclusions and Future Work 

 With the findings of this effort, we can see the effects of EP plumes on spacecraft 

in formation flight. If not properly designed for, plume impingement can present a very 

serious threat to the health and welfare of spacecraft in even simple formations. This 

section looks at the conclusions from this effort and some of the possible future avenues 

this research can be taken. 

11.1. Conclusions 

Due to the erosion properties of the AR coatings, even a small amount of exposure 

over the course of an orbit can significantly reduce the effectiveness of the solar panel 

due to the changes in transmission properties of the coating. We have also shown at lower 

orbital altitudes where the magnetic field is reasonably strong (~10-5 T), the magnetic 

field provides sufficient protection at most orbital inclinations from plume impingement. 

At those orbital conditions that show erosion, we have also demonstrated that significant 

changes in the plume density can alter its interaction properties with both the spacecraft 

and the local magnetic field.  

 However, at higher altitudes, where the magnetic field grows weaker, the threat 

for direct impingement increases significantly to where the protections of the 

geomagnetic field prove inadequate. Also, due to the study in LEO (400 km altitude), we 

have shown that at higher inclinations, the magnetic field oscillations can play a 

significant factor in allowing for plume impingement, even at larger ISD’s, due to the 

local magnetic field vector. Because of this interaction, we can also expect to see a local 

weakening of the plume energy via magnetic braking based on the interactions between 

the geomagnetic field and plume. 
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This effort has also provided both experimental and theoretical data for the sputtering 

yields of popular AR coatings for solar cell coverglasses as well as extended the data set 

for a key structural component of spacecraft and the reflective surface coating of multi-

layer insulation (i.e.: aluminum). Through the experiments with these materials, we have 

demonstrated that MgF2 is indeed a more sputter-resistant AR coating for space 

operations. In practical performance situations, MgF2 coatings last an order of magnitude 

longer than ITO coatings. However, depending on the mission application and formation 

specifics, ITO may be a viable alternative as long as the threat of direct ion plume 

impingement is minimal. The sputter data from this work can be used for a wide variety 

of purposes in the engineering community, primarily in the applications of sputter 

processes and mission design. 

11.2. Future Work 

There are a few research paths that may be viable for future directions of this 

work. In terms of the sputter yield data, the need to expand the current Yamamura theory 

for compound sputtering exists. Although using fsig as a fitting parameter can generate 

sufficient results for compound targets, the ability to find theoretical estimates of this 

parameter may prove beneficial. If fsig was found theoretically, one would be able to 

generate theoretical Yamamura curves for these types of materials. As a result, it would 

be possible to predict sputtering conditions for these materials and be able to apply these 

models to either mission design of components or sputter experiments for experimental 

validation. 

As for the experimental data, the testing itself was limited due to the logistic 

difficulties of the propellant needed for the study. It is recommended to fill in the gaps of 
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the sputter data with the intermediate incidence angles. This study would serve to either 

further validate the theoretical fits established in this work or allow the fits to be refined. 

In particular, it would be beneficial for the purpose of refining the model fit parameters to 

identify the critical angle where peak erosion occurs. There is also a potential opening at 

looking that the specific topography effects of each material due to the impingement 

experienced. While some topography observations were made during the early phases of 

this work with the SPPL-1, no further research was established in this area [60]. 

Observing the changes of the surface composition, as well as observing the defects on a 

microscopic scale, may give an even clearer picture to the dangers of plasma erosion of 

spacecraft. 

The simulation work provided within this effort can be extended by examining 

other types of formation flight, such as the bistatic formation shown in Fig. 24. This 

would be a logical expansion of this work since the entire formation is at an angle to the 

target, creating a potentially more hazardous sputter situation for the follower spacecraft. 

However, because of the possible maneuvers that can be performed with these spacecraft, 

further thought may have to be given to the types of maneuvers performed based on the 

erosion characteristics, especially at higher orbital altitudes and inclinations. 

 Finally, the erosion study should be expanded to looking beyond circular orbits. 

Although the study here presents the baseline of what one could expect to see, some 

orbits have eccentricity. As a result, the altitude changes as the spacecraft propagates 

throughout the orbit. Depending on the eccentricity of the orbit, these altitude changes 

would introduce changes in the magnetic field environment, and therefore changes in the 

impingement possibilities of the orbit. Orbital transfers, such as Hohmann transfers, 
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would also present an interesting case for this study for the altitude changes and thrust 

time required to generate the delta-v for the maneuver. 
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Appendix A: Individual Sample Sputter Yield Data 

A.1. Magnesium Fluoride Samples 

 

Table 17: Magnesium Fluoride Normal Incidence Sputter Data 

Energy 

(eV) 

Sample # 

Average 

Ion Rate 

(ions/sec) 

Ion 

Rate 

Std. 

Dev 

(%) 

Duration 

(min) 

Depth 

(µm) 

Sputter Yield 

(atoms/ion) 

500 1 7.04E12 3.93 45 5.38E-2 0.2585 

500 6 7.47E12 2.56 90 1.03E-1 0.2327 

500 7 1.03E13 1.85 90 1.44E-1 0.2370 

750 4 1.19E13 17.68 30 1.27E-1 0.5433 

750 8 7.77E12 6.28 60 1.88E-1 0.6133 

750 9 8.75E12 4.26 60 1.78E-1 0.5157 

750 10 1.81E13 6.85 60 4.26E-1 0.5974 

1000 4 5.27E12 7.75 45 1.59E-1 1.0189 

1000 5 9.97E12 4.07 45 2.73E-1 0.9264 

1000 6 1.02E13 7.27 45 2.89E-1 0.9575 

1250 5 2.15E13 1.70 15 3.84E-1 1.8113 

1250 6 1.12E13 2.72 15 1.70E-1 1.5373 

1250 8 1.21E13 5.65 20 2.57E-1 1.6151 

1500 6 1.10E13 5.76 10 1.62E-1 2.2364 

1500 7 1.71E13 2.84 15 2.95E-1 1.7513 
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Table 18: Magnesium Fluoride 30º Sputter Data 

Energy 

(eV) 

Sample # 

Average 

Ion Rate 

(ions/sec) 

Ion 

Rate 

Std. 

Dev 

(%) 

Duration 

(min) 

Depth 

(µm) 

Sputter Yield 

(atoms/ion) 

500 4 1.83E12 3.42 60 1.02E-1 1.4061 

500 5 1.87E12 3.65 60 1.03E-1 1.3995 

500 8 1.69E12 5.10 120 1.83E-1 1.3770 

750 3 4.76E12 5.92 30 1.81E-1 1.9229 

750 4 2.78E12 2.83 90 3.12E-1 1.8930 

750 6 4.05E12 5.21 90 2.82E-1 1.1747 

1000 1 4.73E12 6.44 60 3.33E-1 1.7888 

1000 2 4.35E12 6.49 60 3.05E-1 1.9264 

1000 12 7.84E12 6.31 15 1.40E-1 1.8130 

1250 1 1.38E13 4.86 25 3.22E-1 1.6151 

1250 2 1.19E13 4.22 25 3.33E-1 1.4205 

1250 3 7.63E12 1.80 40 1.95E-1 1.7070 

1250 4 4.08E12 1.62 40 3.60E-1 3.3540 

1250 9 5.31E12 1.96 15 1.81E-1 3.4600 

1250 10 4.36E12 1.82 40 3.04E-1 2.6568 

1500 1 1.36E13 8.49 20 4.31E-1 2.4173 

1500 4 7.90E12 8.07 20 2.14E-1 2.0627 

1500 7 1.32E13 2.10 10 2.63E-1 3.0382 
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Table 19: Magnesium Fluoride 60º Sputter Data 

Energy 

(eV) 

Sample # 

Average 

Ion Rate 

(ions/sec) 

Ion 

Rate 

Std. 

Dev 

(%) 

Duration 

(min) 

Depth 

(µm) 

Sputter Yield 

(atoms/ion) 

500 1 1.06E12 2.67 75 3.91E-1 7.4961 

500 3 9.87E11 3.11 120 5.08E-1 6.5253 

500 4 2.39E12 3.01 61 4.46E-1 4.6580 

750 1 1.63E12 1.73 30 2.31E-1 7.1993 

750 2 1.54E12 1.68 30 1.71E-1 5.6558 

750 4 3.52E12 5.73 15 1.97E-1 5.6887 

1000 2 3.40E12 2.07 20 3.82E-1 8.5613 

1000 4 2.26E12 1.38 15 2.65E-1 11.8850 

1000 5 2.57E12 1.56 15 2.11E-1 8.3358 

1250 4 1.07E13 9.13 4.75 3.67E-1 10.9799 

1250 6 8.95E12 8.08 4.75 3.87E-1 13.8560 

1250 7 6.30E12 9.69 4.75 2.47E-1 12.5822 

1500 9 9.45E12 7.13 4.75 4.46E-1 15.1309 

1500 10 3.33E12 13.54 4.75 1.92E-1 18.4845 

1500 11 6.35E12 7.75 4.75 3.06E-1 15.4597 
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A.2. Indium Tin Oxide Samples 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 20: Indium Tin Oxide Normal Incidence Sputter Data 

Energy 

(eV) 

Sample # 

Average 

Ion Rate 

(ions/sec) 

Ion 

Rate 

Std. 

Dev 

(%) 

Duration 

(min) 

Depth 

(µm) 

Sputter Yield 

(atoms/ion) 

500 1 5.66E12 3.34 10 2.54E-1 2.2457 

500 2 6.26E12 7.99 10 2.09E-1 1.6733 

500 3 5.70E12 8.24 10 2.06E-1 1.8125 

750 1 5.37E12 97.58 10 3.57E-1 3.3239 

750 2 1.02E13 3.42 10 4.45E-1 2.1825 

750 3 9.89E12 2.39 10 5.41E-1 2.7369 

750 4 1.44E13 8.91 10 5.06E-1 1.7579 

1000 1 1.37E13 2.30 5 5.10E-1 3.7275 

1000 2 1.11E13 3.36 5 4.26E-1 3.8412 

1000 3 1.48E13 3.18 5 3.32E-1 2.2475 

1000 4 1.73E13 5.66 5 4.12E-1 2.3865 

1250 1 1.15E13 3.34 2.5 2.84E-1 4.9497 

1250 2 1.25E13 3.81 2.5 2.96E-1 4.7415 

1250 3 1.38E13 3.63 2.5 3.06E-1 4.4405 

1250 4 2.43E13 8.25 3 4.87E-1 3.3431 

1500 1 1.38E13 2.42 2.5 4.25E-1 6.1591 

1500 2 1.50E13 2.85 2.5 3.49E-1 4.6562 

1500 3 1.28E13 2.61 2.5 3.97E-1 6.2054 

1500 4 1.54E13 5.24 3 2.82E-1 3.8240 
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Table 21: Indium Tin Oxide 30º Sputter Data 

Energy 

(eV) 

Sample # 

Average 

Ion Rate 

(ions/sec) 

Ion 

Rate 

Std. 

Dev 

(%) 

Duration 

(min) 

Depth 

(µm) 

Sputter Yield 

(atoms/ion) 

500 1 1.93E12 12.10 10 1.45E-1 3.7725 

500 2 2.03E12 9.90 10 1.57E-1 3.8760 

500 3 1.71E12 10.40 10 1.93E-1 5.6473 

750 1 4.87E12 11.73 10 4.61E-1 4.7362 

750 2 4.80E12 10.76 10 4.39E-1 4.5769 

750 3 3.70E12 22.51 10 3.11E-1 4.2011 

1000 1 5.69E12 6.85 5 2.85E-1 5.0205 

1000 4 6.31E12 6.75 5 3.94E-1 6.2424 

1000 5 4.77E12 5.99 5 3.11E-1 6.5103 

1250 1 7.97E12 8.25 5 4.26E-1 5.3542 

1250 2 9.33E12 8.48 5 4.84E-1 5.1954 

1250 3 7.66E12 10.06 5 4.62E-1 6.0353 

1500 2 5.82E12 8.17 5 4.44E-1 7.6372 

1500 7 1.21E13 2.17 2.75 4.39E-1 6.5801 

1500 8 1.00E13 8.33 2.75 3.46E-1 6.3001 
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Table 22: Indium Tin Oxide 60º Sputter Data 

Energy 

(eV) 

Sample # 

Average 

Ion Rate 

(ions/sec) 

Ion 

Rate 

Std. 

Dev 

(%) 

Duration 

(min) 

Depth 

(µm) 

Sputter Yield 

(atoms/ion) 

500 1 7.61E11 2.59 8 1.53E-1 12.5850 

500 3 2.26E12 3.15 8 3.91E-1 10.8182 

500       

750 1 1.47E12 1.08 6 2.65E-1 15.0173 

750 3 1.88E12 1.95 6 3.46E-1 15.3355 

750 4 4.82E12 1.72 5 4.87E-1 10.1191 

1000 1 2.38E12 3.47 4 3.77E-1 19.8492 

1000 2 3.20E12 2.84 4 3.81E-1 14.9133 

1000 3 3.99E12 2.47 4 3.48E-1 10.9035 

1250 1 2.56E12 1.26 3 2.96E-1 19.2964 

1250 3 2.66E12 0.88 3 2.74E-1 17.1458 

1250 4 3.42E12 2.10 3 3.23E-1 15.7556 

1500 1 2.36E12 0.93 1.5 1.38E-1 19.5092 

1500 2 4.79E12 0.68 1.5 2.47E-1 17.2011 

1500 3 3.72E12 0.85 1.5 2.35E-1 21.0764 
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A.3. LEO Erosion Study Datasets 

 

 

 

 

Table 23: LEO (400 km altitude) @ i=75º, Aluminum 

ISD (m) Energy (eV) Time (min) Flux (#/m
2

-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 7.179 1.18E+18 7.24E-09 Y 

1000 7.179 1.67E+18 1.75E-08 Y 

1500 7.179 2.05E+18 2.78E-08 Y 

100 

500 5.1278 2.12E+17 9.36E-10 Y 

1000 5.1278 3.00E+17 2.25E-09 Y 

1500 5.1278 3.68E+17 3.58E-09 Y 

250 

500 3.0767 2.05E+16 5.44E-11 Y 

1000 3.0767 2.89E+16 1.31E-10 Y 

1500 3.0767 3.54E+16 2.08E-10 Y 

500 

500 2.5639 4.26E+15 9.50E-12 Y 

1000 2.5639 6.03E+15 2.27E-11 Y 

1500 2.5639 7.38E+15 3.61E-11 Y 

1000 

500 2.0511 2.33E+15 4.11E-12 Y 

1000 2.0511 3.30E+15 9.89E-12 Y 

1500 2.0511 4.04E+15 1.57E-11 Y 
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Table 24: LEO (400 km altitude) @ i=75º, MgF2, Best Case Scenario 

ISD (m) Energy (eV) Time (min) Flux (#/m
2

-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 7.179 1.18E+18 3.28E-09 Y 

1000 7.179 1.67E+18 2.41E-08 Y 

1500 7.179 2.05E+18 5.05E-08 Y 

100 

500 5.1278 2.12E+17 4.35E-10 Y 

1000 5.1278 3.00E+17 3.13E-09 Y 

1500 5.1278 3.68E+17 6.53E-09 Y 

250 

500 3.0767 2.05E+16 2.57E-11 Y 

1000 3.0767 2.89E+16 1.82E-10 Y 

1500 3.0767 3.54E+16 3.80E-10 Y 

500 

500 2.5639 4.26E+15 4.48E-12 Y 

1000 2.5639 6.03E+15 3.17E-11 Y 

1500 2.5639 7.38E+15 6.60E-11 Y 

1000 

500 2.0511 2.33E+15 1.90E-12 Y 

1000 2.0511 3.30E+15 1.37E-11 Y 

1500 2.0511 4.04E+15 2.86E-11 Y 
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Table 25: LEO (400 km altitude) @ i=75º, MgF2, Worst Case Scenario 

ISD (m) Energy (eV) Time (min) Flux (#/m
2

-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 7.179 1.18E+18 4.89E-08 Y 

1000 7.179 1.67E+18 8.58E-08 Y 

1500 7.179 2.05E+18 1.30E-07 Y 

100 

500 5.1278 2.12E+17 6.24E-09 Y 

1000 5.1278 3.00E+17 1.11E-08 Y 

1500 5.1278 3.68E+17 1.68E-08 Y 

250 

500 3.0767 2.05E+16 3.59E-10 Y 

1000 3.0767 2.89E+16 6.41E-10 Y 

1500 3.0767 3.54E+16 9.73E-10 Y 

500 

500 2.5639 4.26E+15 6.24E-11 Y 

1000 2.5639 6.03E+15 1.11E-10 Y 

1500 2.5639 7.38E+15 1.69E-10 Y 

1000 

500 2.0511 2.33E+15 2.74E-11 Y 

1000 2.0511 3.30E+15 4.85E-11 Y 

1500 2.0511 4.04E+15 7.37E-11 Y 

 



147 

 

 

 

 

 

Table 26: LEO (400 km altitude) @ i=75º, ITO, Best Case Scenario 

ISD (m) Energy (eV) Time (min) Flux (#/m
2

-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 7.179 1.18E+18 7.11E-08 Y 

1000 7.179 1.67E+18 2.35E-07 Y 

1500 7.179 2.05E+18 4.11E-07 Y 

100 

500 5.1278 2.12E+17 9.25E-09 Y 

1000 5.1278 3.00E+17 3.04E-08 Y 

1500 5.1278 3.68E+17 5.31E-08 Y 

250 

500 3.0767 2.05E+16 5.39E-10 Y 

1000 3.0767 2.89E+16 1.77E-09 Y 

1500 3.0767 3.54E+16 3.08E-09 Y 

500 

500 2.5639 4.26E+15 9.38E-11 Y 

1000 2.5639 6.03E+15 3.07E-10 Y 

1500 2.5639 7.38E+15 5.36E-10 Y 

1000 

500 2.0511 2.33E+15 4.05E-11 Y 

1000 2.0511 3.30E+15 1.33E-10 Y 

1500 2.0511 4.04E+15 2.33E-10 Y 
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Table 27: LEO (400 km altitude) @ i=75º, ITO, Worst Case Scenario 

ISD (m) Energy (eV) Time (min) Flux (#/m
2

-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 7.179 1.18E+18 2.64E-07 Y 

1000 7.179 1.67E+18 5.11E-07 Y 

1500 7.179 2.05E+18 7.54E-07 Y 

100 

500 5.1278 2.12E+17 3.40E-08 Y 

1000 5.1278 3.00E+17 6.58E-08 Y 

1500 5.1278 3.68E+17 9.70E-08 Y 

250 

500 3.0767 2.05E+16 1.97E-09 Y 

1000 3.0767 2.89E+16 3.81E-09 Y 

1500 3.0767 3.54E+16 5.62E-09 Y 

500 

500 2.5639 4.26E+15 3.42E-10 Y 

1000 2.5639 6.03E+15 6.62E-10 Y 

1500 2.5639 7.38E+15 9.77E-10 Y 

1000 

500 2.0511 2.33E+15 1.49E-10 Y 

1000 2.0511 3.30E+15 2.89E-10 Y 

1500 2.0511 4.04E+15 4.26E-10 Y 
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Table 28: LEO (400 km altitude) @ i=90º, Aluminum 

ISD (m) Energy (eV) Time (min) Flux (#/m
2
-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 10.7685 1.81E+18 1.73E-08 Y 

1000 10.7685 2.57E+18 4.14E-08 Y 

1500 10.7685 3.14E+18 6.55E-08 Y 

100 

500 8.7173 3.70E+17 2.89E-09 Y 

1000 8.7173 5.23E+17 6.89E-09 Y 

1500 8.7173 6.41E+17 1.09E-08 Y 

250 

500 8.7173 5.92E+16 4.62E-10 Y 

1000 8.7173 8.37E+16 1.10E-09 Y 

1500 8.7173 1.02E+17 1.75E-09 Y 

500 

500 7.6918 1.31E+16 9.06E-11 Y 

1000 7.6918 1.85E+16 2.16E-10 Y 

1500 7.6918 2.27E+16 3.42E-10 Y 

1000 

500 7.6918 4.12E+15 2.82E-11 Y 

1000 7.6918 5.82E+15 6.74E-11 Y 

1500 7.6918 7.13E+15 1.07E-10 
Y 
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Table 29: LEO (400 km altitude) @ i=90º, MgF2, Best Case Scenario 

ISD (m) Energy (eV) Time (min) Flux (#/m
2
-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 10.7685 1.81E+18 8.80E-09 Y 

1000 10.7685 2.57E+18 5.91E-08 Y 

1500 10.7685 3.14E+18 1.22E-07 Y 

100 

500 8.7173 3.70E+17 1.52E-09 Y 

1000 8.7173 5.23E+17 9.96E-09 Y 

1500 8.7173 6.41E+17 2.04E-08 Y 

250 

500 8.7173 5.92E+16 2.43E-10 Y 

1000 8.7173 8.37E+16 1.59E-09 Y 

1500 8.7173 1.02E+17 3.26E-09 Y 

500 

500 7.6918 1.31E+16 4.85E-11 Y 

1000 7.6918 1.85E+16 3.14E-10 Y 

1500 7.6918 2.27E+16 6.40E-10 Y 

1000 

500 7.6918 4.12E+15 1.46E-11 Y 

1000 7.6918 5.82E+15 9.69E-11 Y 

1500 7.6918 7.13E+15 1.99E-10 
Y 
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Table 30: LEO (400 km altitude) @ i=90º, MgF2, Worst Case Scenario 

ISD (m) Energy (eV) Time (min) Flux (#/m
2
-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 10.7685 1.81E+18 1.11E-07 Y 

1000 10.7685 2.57E+18 2.02E-07 Y 

1500 10.7685 3.14E+18 3.06E-07 Y 

100 

500 8.7173 3.70E+17 1.82E-08 Y 

1000 8.7173 5.23E+17 3.36E-08 Y 

1500 8.7173 6.41E+17 5.09E-08 Y 

250 

500 8.7173 5.92E+16 2.92E-09 Y 

1000 8.7173 8.37E+16 5.37E-09 Y 

1500 8.7173 1.02E+17 8.15E-09 Y 

500 

500 7.6918 1.31E+16 5.69E-10 Y 

1000 7.6918 1.85E+16 1.05E-09 Y 

1500 7.6918 2.27E+16 1.60E-09 Y 

1000 

500 7.6918 4.12E+15 1.80E-10 Y 

1000 7.6918 5.82E+15 3.29E-10 Y 

1500 7.6918 7.13E+15 4.99E-10 
Y 
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Table 31: LEO (400 km altitude) @ i=90º, ITO, Best Case Scenario 

ISD (m) Energy (eV) Time (min) Flux (#/m
2
-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 10.7685 1.81E+18 1.74E-07 Y 

1000 10.7685 2.57E+18 5.63E-07 Y 

1500 10.7685 3.14E+18 9.78E-07 Y 

100 

500 8.7173 3.70E+17 2.94E-08 Y 

1000 8.7173 5.23E+17 9.41E-08 Y 

1500 8.7173 6.41E+17 1.63E-07 Y 

250 

500 8.7173 5.92E+16 4.70E-09 Y 

1000 8.7173 8.37E+16 1.51E-08 Y 

1500 8.7173 1.02E+17 2.61E-08 Y 

500 

500 7.6918 1.31E+16 9.27E-10 Y 

1000 7.6918 1.85E+16 2.96E-09 Y 

1500 7.6918 2.27E+16 5.12E-09 Y 

1000 

500 7.6918 4.12E+15 2.86E-10 Y 

1000 7.6918 5.82E+15 9.19E-10 Y 

1500 7.6918 7.13E+15 1.60E-09 
Y 
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Table 32: LEO (400 km altitude) @ i=90º, ITO, Worst Case Scenario 

ISD (m) Energy (eV) Time (min) Flux (#/m
2
-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 10.7685 1.81E+18 6.18E-07 Y 

1000 10.7685 2.57E+18 1.20E-06 Y 

1500 10.7685 3.14E+18 1.77E-06 Y 

100 

500 8.7173 3.70E+17 1.03E-07 Y 

1000 8.7173 5.23E+17 1.99E-07 Y 

1500 8.7173 6.41E+17 2.93E-07 Y 

250 

500 8.7173 5.92E+16 1.64E-08 Y 

1000 8.7173 8.37E+16 3.19E-08 Y 

1500 8.7173 1.02E+17 4.69E-08 Y 

500 

500 7.6918 1.31E+16 3.21E-09 Y 

1000 7.6918 1.85E+16 6.24E-09 Y 

1500 7.6918 2.27E+16 9.19E-09 Y 

1000 

500 7.6918 4.12E+15 1.00E-09 Y 

1000 7.6918 5.82E+15 1.95E-09 Y 

1500 7.6918 7.13E+15 2.87E-09 
Y 
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Table 33: Sun-Sync (705 km altitude) @ i=98.14º, Aluminum 

ISD (m) Energy (eV) Time (min) Flux (#/m
2
-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 10.4079 1.63E+18 1.49E-08 Y 

1000 10.4079 2.31E+18 3.57E-08 Y 

1500 10.4079 2.83E+18 5.66E-08 Y 

100 

500 8.7645 3.45E+17 2.67E-09 Y 

1000 8.7645 4.88E+17 6.40E-09 Y 

1500 8.7645 5.98E+17 1.01E-08 Y 

250 

500 7.669 4.85E+16 3.30E-10 Y 

1000 7.669 6.86E+16 7.89E-10 Y 

1500 7.669 8.40E+16 1.25E-09 Y 

500 

500 7.1212 1.13E+16 7.14E-11 Y 

1000 7.1212 1.59E+16 1.71E-10 Y 

1500 7.1212 1.95E+16 2.70E-10 Y 

1000 

500 7.1212 2.82E+15 1.78E-11 Y 

1000 7.1212 3.98E+15 4.27E-11 Y 

1500 7.1212 4.88E+15 6.76E-11 Y 

 

A.4. Sun-Synchronous Erosion Study Dataset 
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Table 34: GEO (35786 km altitude) @ i=0º, Aluminum 

ISD (m) Energy (eV) Time (min) Flux (#/m
2

-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 1.44E+03 1.59E+19 2.09E-05 N 

1000 1.44E+03 2.25E+19 4.97E-05 N 

1500 1.44E+03 2.76E+19 7.85E-05 N 

100 

500 1.44E+03 3.98E+18 5.23E-06 N 

1000 1.44E+03 5.63E+18 1.24E-05 N 

1500 1.44E+03 6.90E+18 1.96E-05 N 

250 

500 1.44E+03 6.37E+17 8.37E-07 N 

1000 1.44E+03 9.01E+17 1.99E-06 N 

1500 1.44E+03 1.10E+18 3.14E-06 N 

500 

500 1.44E+03 1.59E+17 2.09E-07 
N 

1000 1.44E+03 2.25E+17 4.97E-07 N 

1500 1.44E+03 2.76E+17 7.85E-07 N 

1000 

500 1.44E+03 3.98E+16 5.23E-08 N 

1000 1.44E+03 5.63E+16 1.24E-07 N 

1500 1.44E+03 6.90E+16 1.96E-07 N 

 

A.5. GEO Erosion Study Datasets 
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Table 35: GEO (35786 km altitude) @ i=0º, MgF2, Best Case Scenario 

ISD (m) Energy (eV) Time (min) Flux (#/m
2

-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 1.44E+03 1.59E+19 1.18E-05 N 

1000 1.44E+03 2.25E+19 7.35E-05 N 

1500 1.44E+03 2.76E+19 1.49E-04 N 

100 

500 1.44E+03 3.98E+18 2.95E-06 N 

1000 1.44E+03 5.63E+18 1.84E-05 N 

1500 1.44E+03 6.90E+18 3.71E-05 N 

250 

500 1.44E+03 6.37E+17 4.72E-07 N 

1000 1.44E+03 9.01E+17 2.94E-06 N 

1500 1.44E+03 1.10E+18 5.94E-06 N 

500 

500 1.44E+03 1.59E+17 1.18E-07 
N 

1000 1.44E+03 2.25E+17 7.35E-07 N 

1500 1.44E+03 2.76E+17 1.49E-06 N 

1000 

500 1.44E+03 3.98E+16 2.95E-08 N 

1000 1.44E+03 5.63E+16 1.84E-07 N 

1500 1.44E+03 6.90E+16 3.71E-07 N 
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Table 36: GEO (35786 km altitude) @ i=0º, MgF2, Worst Case Scenario 

ISD (m) Energy (eV) Time (min) Flux (#/m
2

-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 1.44E+03 1.59E+19 1.28E-04 N 

1000 1.44E+03 2.25E+19 2.41E-04 N 

1500 1.44E+03 2.76E+19 3.65E-04 N 

100 

500 1.44E+03 3.98E+18 3.21E-05 N 

1000 1.44E+03 5.63E+18 6.03E-05 N 

1500 1.44E+03 6.90E+18 9.14E-05 N 

250 

500 1.44E+03 6.37E+17 5.14E-06 N 

1000 1.44E+03 9.01E+17 9.65E-06 N 

1500 1.44E+03 1.10E+18 1.46E-05 N 

500 

500 1.44E+03 1.59E+17 1.28E-06 N 

1000 1.44E+03 2.25E+17 2.41E-06 N 

1500 1.44E+03 2.76E+17 3.65E-06 N 

1000 

500 1.44E+03 3.98E+16 3.21E-07 N 

1000 1.44E+03 5.63E+16 6.03E-07 N 

1500 1.44E+03 6.90E+16 9.14E-07 N 
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Table 37: GEO (35786 km altitude) @ i=0º, ITO, Best Case Scenario 

ISD (m) Energy (eV) Time (min) Flux (#/m
2

-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 1.44E+03 1.59E+19 2.17E-04 N 

1000 1.44E+03 2.25E+19 6.84E-04 N 

1500 1.44E+03 2.76E+19 1.20E-03 N 

100 

500 1.44E+03 3.98E+18 5.42E-05 N 

1000 1.44E+03 5.63E+18 1.71E-04 N 

1500 1.44E+03 6.90E+18 2.95E-04 N 

250 

500 1.44E+03 6.37E+17 8.67E-06 N 

1000 1.44E+03 9.01E+17 2.74E-05 N 

1500 1.44E+03 1.10E+18 4.72E-05 N 

500 

500 1.44E+03 1.59E+17 2.17E-06 N 

1000 1.44E+03 2.25E+17 6.84E-06 N 

1500 1.44E+03 2.76E+17 1.18E-05 N 

1000 

500 1.44E+03 3.98E+16 5.42E-07 N 

1000 1.44E+03 5.63E+16 1.71E-06 N 

1500 1.44E+03 6.90E+16 2.95E-06 N 
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Table 38: GEO (35786 km altitude) @ i=0º, ITO, Worst Case Scenario 

ISD (m) Energy (eV) Time (min) Flux (#/m
2

-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 1.44E+03 1.59E+19 7.34E-04 N 

1000 1.44E+03 2.25E+19 1.40E-03 N 

1500 1.44E+03 2.76E+19 2.10E-03 N 

100 

500 1.44E+03 3.98E+18 1.84E-04 N 

1000 1.44E+03 5.63E+18 3.57E-04 N 

1500 1.44E+03 6.90E+18 5.26E-04 N 

250 

500 1.44E+03 6.37E+17 2.94E-05 N 

1000 1.44E+03 9.01E+17 5.71E-05 N 

1500 1.44E+03 1.10E+18 8.41E-05 N 

500 

500 1.44E+03 1.59E+17 7.34E-06 N 

1000 1.44E+03 2.25E+17 1.43E-05 N 

1500 1.44E+03 2.76E+17 2.10E-05 N 

1000 

500 1.44E+03 3.98E+16 1.84E-06 N 

1000 1.44E+03 5.63E+16 3.57E-06 N 

1500 1.44E+03 6.90E+16 5.26E-06 N 
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Fig. 94: Original ITO Angular Model, f=1.7850 

 

Appendix B: Data Observations 

B.1. fsig Fitting 

 During Chapters 8 and 9, the parameter of fsig had to be turned into a fitting 

parameter in order to establish the Yamamura curve fit that is seen in those chapters. 

Because the fitting of compound materials to a Yamamura curve has so little prior work, 

it was necessary to find a solution in order to provide the theoretical fit within this effort. 

 Initially, the fsig value used was an amalgamation of the corresponding values of 

the elemental composition of the compounds. However, although this seemed a 

reasonable plan, this also led to the curves yielding unreasonably high sputter yields for 

the majority of incidence angles, as shown above in Fig. 94. The reason for this is 

unconfirmed, as of this writing, but it may have to do with the interaction of the lattice 

geometry and the sputter interaction. 
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 Through multiple fitting sessions, we determined the fsig parameters that are 

shown in the above chapters. However, the question arose of potentially finding an fsig 

that could fit the 30º and 60º incidences well individually. This would seem to be 

straightforward, however, as would be evident, this is no small task. On the contrary, it 

may be infeasible to do this purely because of the structure of the curve fit. 

 The structure of the curve fit, based on the Yamamura equation itself (Equation 

3-11), makes it easier to manipulate the fit at higher incidence angles closer to the peak of 

the curve than at the lower angles in the quasi-linear section of the curve. The figures 

below show the adjustment from the fsig used within the effort to the potential fitting of 

the 30º incidence. 

 

 

 

 

 

 

 

 

 

 

Fig. 95: Comparison of original fsig to accepted fsig 
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Fig. 96: Comparisons between fsig=1.25 (left) and fsig=1.5 (right), 30º 
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Fig. 97: Comparisons between fsig=1.25 (left) and fsig=1.5 (right), 60º 

 

 

 

 As shown in the preceding figures, the changing of fsig has a more dramatic effect 

on the higher incidence angles, as it translates the curve fit (within an incidence angle) 

vertically along the sputter yield axis. However, the effect on the 30º incidence is very 

minimal. The changing of fsig is also insufficient to change the slope of the fit in this 

location, as well.  
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Appendix C: Previous Test Results 

 This section contains the previous analysis that was seen in Chapters 10.3 through 

10.5. There was a previous issue with the set of magnetic field equations (Equation 4-12) 

in which they were divided by 4π and resulted in a reduced strength magnetic field. 

Therefore, the magnetic braking effect that we see after the β transition point is much less 

pronounced, resulting in a higher potential for erosion. The appropriate figures below are 

similar to the official figures from the aforementioned sections of this work, but with the 

magnetic field reductions in place. It is noteworthy to mention that, despite the error with 

the magnetic field values, the results in GEO did not change at all, due to the relatively 

weak magnetic field strength in that region. 

C.1. Test Case Results 

 As mentioned in Chapter 10.2, the leader-follower formation from the effort by 

Roberts[2] was utilized to test the accuracy of the simulation 

efforts for this work. According to Roberts, the C-TOS leader-

follower formation experienced particle impacts to the spacecraft 

for approximately 16-18 minutes during its one orbital maneuver 

within one portion of the orbit according to Fig. 98. It is also 

noteworthy to indicate that they expect the CEX impingement to have a higher flux of 

particles to the follower than from direct impingement itself, yet will contribute very little 

to erosion. 

Table 39: C-TOS Leader-

Follower Parameters [2] 

Altitude 1100 km 

Inclination 63.4º 

ISD 500 m 
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Fig. 99: C-TOS Test Case: Beta at 500 m (left), Hit Graph (right) 

 

The simulation from this effort 

indicates that the exposure time seen 

by the follower is 17.53 minutes, 

which is within the expected 

tolerance of the erosion time. Yet, 

while the simulation agrees with the 

timetable set by previous work on this 

formation, the simulation indicates 

that the exposure takes place 

throughout multiple sections of the orbit, as shown in Fig. 99. The simulation shows that 

although the erosion times are split into three different events throughout the orbit, this is 

also due to the regions in which there are sufficient β values that allow for direct plume 

exposure. All other sections of the orbit show no direct exposure at 500 m. 

From here, the results from our simulation show a linear erosion trend, as 

demonstrated in Section 3.2.5. The data shows minor erosion of both the aluminum 

 

Fig. 98: C-TOS Impingement Flux [2] 
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structure as well as the AR coatings on the panels in the best case scenarios. For the worst 

case scenarios for MgF2, the AR coating has the potential to lose ~16-45% of its 

thickness when exposed to the plume at a 60º incidence, with respect to the 500-1500 eV 

energy range. According to Yalin[52], even a 15% dosage will affect the transmission 

properties significantly, which will translate to a significant loss of power. A similar 

effect should be expected for the ITO coatings, as well, which bear even higher sputter 

yields than the MgF2. Even with normal incidence exposure, the ITO still completely 

erodes away after one orbit with a 1500 eV beam; the other cases will expect to see 

significant power drops, as well. The worst-case exposures also show total failure above 

500 eV for one orbit. 

 

 

 

 

 

 

 

 

 

 

Fig. 100: C-TOS Test Case Sputter Depths 
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C.2. LEO Case Study 

 Low Earth Orbit (LEO) is home to many Earth observation missions, and as such, 

could become a focal point for formation flight missions of all types in the near future. 

To this end, a comprehensive study was performed for a range of orbital inclinations as 

well as ISD’s, as shown in Table 12. The orbital altitude chosen (400 km) coincides with 

the International Space Station (ISS). This section will work to summarize the results of 

the case study, with the majority of the data available in Appendix A.3. LEO Erosion 

Study Datasets. For reference, unless otherwise noted, the plume density used for these 

observations is 1.47x1018 #/m3. 

C.2.1.  Plume Exposure Observations 

Because of the unique geomagnetic field environment, we are able to examine 

multiple trends within LEO: the changes in exposure due to the change in ISD and the 

changes in the exposure due to the change in orbital inclination. At first, the changes in 

exposure because of inclination change would be non-obvious; however, as mentioned 

above, the geomagnetic field environment in LEO is stronger than the other test altitudes. 

As the geomagnetic field model indicates, the field will increase significantly with 

respect to the orbital inclination, as shown in Fig. 89. As the orbital inclination increases, 

the gradient of the field strength increases as the peaks of the field increase significantly 

and the valleys of the field reduce in strength, as well. 

For the most part, the exposure properties of the plume tend to remain the same 

until 45º inclination. The close-range ISD’s show total exposure until a transition occurs 

between 250 and 500 m. After this, the exposure time drops off sharply in this transition 
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Fig. 89: LEO Geomagnetic Field Environment 

 

regime until 500 m, where there is no observed interaction from the ion plume for the 

remaining ISD’s. 

 As the orbital inclination increases, the transition point from full exposure to 

reduced exposure on orbit begins to shift closer to the spacecraft. This trend is expected 

due to the increasing magnetic 

field strength, as shown in Fig. 

90. These changes in the 

magnetic field start to affect the 

plume interaction significantly 

by decreasing the exposure time 

at the intermediate ISD’s, as 

well. However, at the higher 

inclinations, the ISD’s which 

formerly showed no interaction 

 

Fig. 90: Exposure Time Trends with respect to Orbital Inclination 
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Fig. 103: Exposure Trends with respect to Plume Density, i=90º 

 

with the spacecraft show very small, but quantifiable exposure times with the spacecraft. 

These occur in very small regions of the orbit where the magnetic field is weakest. This 

indicates that at higher orbital inclinations, the follower spacecraft is still vulnerable to 

plume impingement. These effects can be observed in Fig. 90. These regions, according 

to the simulation, also indicate varying degrees of energy loss of the plume, which will be 

discussed in a later section. 

 Another observation is the variance in density with respect to the exposure 

properties of the plume. As Equation 2-5 would suggest, the plasma density is directly 

proportional to β and, as such, plays an important role in determining the interaction 

properties of the plume to the follower spacecraft. This is verified by looking at the 

impact of plume density on the exposure times at a single orbital inclination, as shown in 

Fig. 103. As expected, the transition point from complete exposure to partial exposure 

begins to shift farther away from the leader spacecraft at higher plume densities.  

It is worth noting that the BHT-HD-600, which served as the basis for the 

assumed plume density, is a 600 W Hall thruster designed for only 36 mN of thrust[65]. 
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As shown, just increasing the density by a factor of 2.5 extended the full exposure 

transition point by 120 m (60%). Therefore, it would stand to reason that high thrust EP 

systems would pose a much higher risk for close formation spaceflight missions, which is 

a reasonable expectation due to higher plume densities. This trend is also in agreement 

with the β modelling trends, as shown in Section 4.2.1. 

C.2.2. LEO Erosion Results 

With the plume interaction properties of LEO determined, we must look at the 

actual erosion characteristics from 

these orbital conditions. As expected, 

the trend of the erosion depths 

coincide with the trends described 

above, showing an increasing linear 

trend with respect to both energy and 

time exposed; likewise, at higher 

ISD’s, the follower spacecraft 

experiences less erosion due to the 

quadratic drop in plume density. For a 

majority of the observed orbital conditions, this general trending holds up fairly well. 

However, as mentioned above, at the higher orbital inclinations, specifically 75º and 90º, 

the orbital conditions allow for small windows of plume interaction that result in surface 

erosion on the follower spacecraft. 

 As for the levels of erosion themselves, most cases show generally light erosion 

of aluminum, with the maximum erosion occurring at a beam energy of 1500 eV and ISD 

 

Fig. 104: LEO Sputter Data, i=0º-45º 
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of 50 m for all LEO orbital conditions, with a depth of approximately 5 µm based on the 

structural cross-section mentioned in Section 10.2.1. It is important to note that a layer of 

BoPET is 4.5 µm thick, so erosion of this level would compromise one layer of the 

BoPET sheath of a spacecraft. This erosion depth is also representative of one complete 

orbit with constant thrust. 

 Likewise, the AR coatings of the solar cells, in most of both the best and worst-

cast scenarios, show significant amounts of erosion ranging from 102 to 104 nm. This, 

according to Yalin[52], would significantly affect the transmission properties of the 

coating, thereby experiencing a significant drop in power to the solar cells. And, as 

expected from earlier chapters, MgF2 is significantly more resistant to plasma erosion 

than ITO in all cases, as the erosion is practically an order of magnitude higher in all 

cases when exposed to the same flux levels. Represented in Fig. 80 below shows the 

representative trends of the AR sputtering. 

 The remainder of the sputter data covering all scenarios can be located in 

Appendix A.3. LEO Erosion Study Datasets. 

 

Fig. 105: LEO AR Sputter Data, Best Case i=0º-45º 
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Fig. 106: Sun-Sync Geomagnetic Environment 

 

C.3. Sun-Synchronous Erosion Results 

Sun-Synchronous orbits are a unique case within this study due to the fact that, unlike 

the other two orbital conditions, this type of orbit always has the solar panels locked in a 

90º incidence, where sputter of the AR coating is not possible. It is also unique due to the 

significant variation of the magnetic field for this set of orbital conditions. While there 

are many Sun-Sync orbits that can be observed, this particular orbit observed belongs to 

the A-Train[68] constellation, which has many satellites in leader-follower formations, 

but at distances much larger than those observed in this study. 

 As shown with the LEO study, the magnetic field oscillation does increase 

proportionally to the orbital inclination. As such, due to these high oscillations, there are 

small pockets of exposure at higher ISD’s that also show energy loss at these locations. 

Overall, the erosion environment is similar to the environment found in LEO at 90º 
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Fig. 107: Sun-Sync Sputter Depth Data 

 

inclination. The sputter depth levels are also very similar, but due to being in a higher 

orbit than from the LEO study, the orbital period is slightly longer, resulting in slightly 

higher levels of erosion. The sputter depths displayed show the expected quadratic fall in 

sputter depth as the flux falls due to the distance from the beam exit, as shown in Fig. 82. 
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C.4. Previous LEO Erosion Study Datasets 

 

 

 

Table 40: LEO (400 km altitude) @ i=0º-45º, Aluminum 

ISD (m) Energy (eV) Time (min) Flux (#/m
2

-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 92.5576 1.59E+19 1.35E-06 N 

1000 92.5576 2.25E+19 3.20E-06 N 

1500 92.5576 2.76E+19 5.06E-06 N 

100 

500 92.5576 3.98E+18 3.37E-07 N 

1000 92.5576 5.63E+18 8.01E-07 N 

1500 92.5576 6.90E+18 1.27E-06 N 

250 

500 92.5576 6.37E+17 5.39E-08 N 

1000 92.5576 9.01E+17 1.28E-07 N 

1500 92.5576 1.10E+18 2.02E-07 N 

500 

500 0 0 0 N 

1000 0 0 0 N 

1500 0 0 0 N 

1000 

500 0 0 0 N 

1000 0 0 0 N 

1500 0 0 0 N 
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Table 41: LEO (400 km altitude) @ i=0º-45º, MgF2, Best Case Scenario 

ISD (m) Energy (eV) Time (min) Flux (#/m
2

-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 92.5576 1.59E+19 7.60E-07 N 

1000 92.5576 2.25E+19 4.74E-06 N 

1500 92.5576 2.76E+19 9.57E-06 N 

100 

500 92.5576 3.98E+18 1.90E-07 N 

1000 92.5576 5.63E+18 1.18E-06 N 

1500 92.5576 6.90E+18 2.39E-06 N 

250 

500 92.5576 6.37E+17 3.04E-08 N 

1000 92.5576 9.01E+17 1.90E-07 N 

1500 92.5576 1.10E+18 3.83E-07 N 

500 

500 0 0 0 N 

1000 0 0 0 N 

1500 0 0 0 N 

1000 

500 0 0 0 N 

1000 0 0 0 N 

1500 0 0 0 N 
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Table 42: LEO (400 km altitude) @ i=0º-45º, MgF2, Worst Case Scenario 

ISD (m) Energy (eV) Time (min) Flux (#/m
2
-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 92.5576 1.59E+19 8.28E-06 N 

1000 92.5576 2.25E+19 1.56E-05 N 

1500 92.5576 2.76E+19 2.36E-05 N 

100 

500 92.5576 3.98E+18 2.07E-06 N 

1000 92.5576 5.63E+18 3.89E-06 N 

1500 92.5576 6.90E+18 5.89E-06 N 

250 

500 92.5576 6.37E+17 3.31E-07 N 

1000 92.5576 9.01E+17 6.22E-07 N 

1500 92.5576 1.10E+18 9.42E-07 N 

500 

500 0 0 0 N 

1000 0 0 0 N 

1500 0 0 0 N 

1000 

500 0 0 0 N 

1000 0 0 0 N 

1500 0 0 0 N 
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Table 43: LEO (400 km altitude) @ i=0º-45º, ITO, Best Case Scenario 

ISD (m) Energy (eV) Time (min) Flux (#/m
2
-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 92.5576 1.59E+19 1.40E-05 N 

1000 92.5576 2.25E+19 4.41E-05 N 

1500 92.5576 2.76E+19 7.61E-05 N 

100 

500 92.5576 3.98E+18 3.49E-06 N 

1000 92.5576 5.63E+18 1.10E-05 N 

1500 92.5576 6.90E+18 1.90E-05 N 

250 

500 92.5576 6.37E+17 5.59E-07 N 

1000 92.5576 9.01E+17 1.76E-06 N 

1500 92.5576 1.10E+18 3.04E-06 N 

500 

500 0 0 0 N 

1000 0 0 0 N 

1500 0 0 0 N 

1000 

500 0 0 0 N 

1000 0 0 0 N 

1500 0 0 0 N 
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Table 44: LEO (400 km altitude) @ i=0º-45º, ITO, Worst Case Scenario 

ISD (m) Energy (eV) Time (min) Flux (#/m
2
-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 92.5576 1.59E+19 4.73E-05 N 

1000 92.5576 2.25E+19 9.21E-05 N 

1500 92.5576 2.76E+19 1.35E-04 N 

100 

500 92.5576 3.98E+18 1.18E-05 N 

1000 92.5576 5.63E+18 2.30E-05 N 

1500 92.5576 6.90E+18 3.39E-05 N 

250 

500 92.5576 6.37E+17 1.89E-06 N 

1000 92.5576 9.01E+17 3.68E-06 N 

1500 92.5576 1.10E+18 5.42E-06 N 

500 

500 0 0 0 N 

1000 0 0 0 N 

1500 0 0 0 N 

1000 

500 0 0 0 N 

1000 0 0 0 N 

1500 0 0 0 N 
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Table 45: LEO (400 km altitude) @ i=60º, Aluminum 

ISD (m) Energy (eV) Time (min) Flux (#/m
2
-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 92.5576 1.59E+19 1.35E-06 N 

1000 92.5576 2.25E+19 3.20E-06 N 

1500 92.5576 2.76E+19 5.06E-06 N 

100 

500 92.5576 3.98E+18 3.37E-07 N 

1000 92.5576 5.63E+18 8.01E-07 N 

1500 92.5576 6.90E+18 1.27E-06 N 

250 

500 
57.6883 

6.37E+17 
3.36E-08 

N 

1000 57.6883 9.01E+17 7.99E-08 N 

1500 57.6883 1.10E+18 1.26E-07 N 

500 

500 0 0 0 N 

1000 0 0 0 N 

1500 0 0 0 N 

1000 

500 0 0 0 N 

1000 0 0 0 N 

1500 0 0 0 N 
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Table 46: LEO (400 km altitude) @ i=60º, MgF2, Best Case Scenario 

ISD (m) Energy (eV) Time (min) Flux (#/m
2
-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 92.5576 1.59E+19 7.60E-07 N 

1000 92.5576 2.25E+19 4.74E-06 N 

1500 92.5576 2.76E+19 9.57E-06 N 

100 

500 92.5576 3.98E+18 1.90E-07 N 

1000 92.5576 5.63E+18 1.18E-06 N 

1500 92.5576 6.90E+18 2.39E-06 N 

250 

500 
57.6883 

6.37E+17 
1.89E-08 

N 

1000 57.6883 9.01E+17 1.18E-07 N 

1500 57.6883 1.10E+18 2.39E-07 N 

500 

500 0 0 0 N 

1000 0 0 0 N 

1500 0 0 0 N 

1000 

500 0 0 0 N 

1000 0 0 0 N 

1500 0 0 0 N 
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Table 47: LEO (400 km altitude) @ i=60º, MgF2, Worst Case Scenario 

ISD (m) Energy (eV) Time (min) Flux (#/m
2
-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 92.5576 1.59E+19 8.28E-06 N 

1000 92.5576 2.25E+19 1.56E-05 N 

1500 92.5576 2.76E+19 2.36E-05 N 

100 

500 92.5576 3.98E+18 2.07E-06 N 

1000 92.5576 5.63E+18 3.89E-06 N 

1500 92.5576 6.90E+18 5.89E-06 N 

250 

500 
57.6883 

6.37E+17 
2.06E-07 

N 

1000 57.6883 9.01E+17 3.88E-07 N 

1500 57.6883 1.10E+18 5.87E-07 N 

500 

500 0 0 0 N 

1000 0 0 0 N 

1500 0 0 0 N 

1000 

500 0 0 0 N 

1000 0 0 0 N 

1500 0 0 0 N 
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Table 48: LEO (400 km altitude) @ i=60º, ITO, Best Case Scenario 

ISD (m) Energy (eV) Time (min) Flux (#/m
2
-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 92.5576 1.59E+19 1.40E-05 N 

1000 92.5576 2.25E+19 4.41E-05 N 

1500 92.5576 2.76E+19 7.61E-05 N 

100 

500 92.5576 3.98E+18 3.49E-06 N 

1000 92.5576 5.63E+18 1.10E-05 N 

1500 92.5576 6.90E+18 1.90E-05 N 

250 

500 
57.6883 

6.37E+17 
3.48E-07 

N 

1000 57.6883 9.01E+17 1.10E-06 N 

1500 57.6883 1.10E+18 1.90E-06 N 

500 

500 0 0 0 N 

1000 0 0 0 N 

1500 0 0 0 N 

1000 

500 0 0 0 N 

1000 0 0 0 N 

1500 0 0 0 N 
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Table 49: LEO (400 km altitude) @ i=60º, ITO, Worst Case Scenario 

ISD (m) Energy (eV) Time (min) Flux (#/m
2
-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 92.5576 1.59E+19 4.73E-05 N 

1000 92.5576 2.25E+19 9.21E-05 N 

1500 92.5576 2.76E+19 1.35E-04 N 

100 

500 92.5576 3.98E+18 1.18E-05 N 

1000 92.5576 5.63E+18 2.30E-05 N 

1500 92.5576 6.90E+18 3.39E-05 N 

250 

500 
57.6883 

6.37E+17 
1.18E-06 

N 

1000 57.6883 9.01E+17 2.30E-06 N 

1500 57.6883 1.10E+18 3.38E-06 N 

500 

500 0 0 0 N 

1000 0 0 0 N 

1500 0 0 0 N 

1000 

500 0 0 0 N 

1000 0 0 0 N 

1500 0 0 0 N 
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Table 50: LEO (400 km altitude) @ i=75º, Aluminum 

ISD (m) Energy (eV) Time (min) Flux (#/m
2
-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 92.5576 1.59E+19 1.35E-06 N 

1000 92.5576 2.25E+19 3.20E-06 N 

1500 92.5576 2.76E+19 5.06E-06 N 

100 

500 92.5576 3.98E+18 3.37E-07 N 

1000 92.5576 5.63E+18 8.01E-07 N 

1500 92.5576 6.90E+18 1.27E-06 N 

250 

500 49.4837 6.37E+17 
2.88E-08 

N 

1000 49.4837 9.01E+17 6.85E-08 N 

1500 49.4837 1.10E+18 1.08E-07 N 

500 

500 2.5639 
4.26E+15 9.50E-12 

Y 

1000 2.5639 6.03E+15 2.27E-11 Y 

1500 2.5639 7.38E+15 3.61E-11 Y 

1000 

500 2.0511 2.33E+15 4.11E-12 Y 

1000 2.0511 3.30E+15 9.89E-12 Y 

1500 2.0511 4.04E+15 1.57E-11 Y 

 



185 

 

 

 

 

 

Table 51: LEO (400 km altitude) @ i=75º, MgF2, Best Case Scenario 

ISD (m) Energy (eV) Time (min) Flux (#/m
2
-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 92.5576 1.59E+19 7.60E-07 N 

1000 92.5576 2.25E+19 4.74E-06 N 

1500 92.5576 2.76E+19 9.57E-06 N 

100 

500 92.5576 3.98E+18 1.90E-07 N 

1000 92.5576 5.63E+18 1.18E-06 N 

1500 92.5576 6.90E+18 2.39E-06 N 

250 

500 49.4837 6.37E+17 
1.63E-08 

N 

1000 49.4837 9.01E+17 1.01E-07 N 

1500 49.4837 1.10E+18 2.05E-07 N 

500 

500 2.5639 
4.26E+15 

4.48E-12 Y 

1000 2.5639 6.03E+15 3.17E-11 Y 

1500 2.5639 7.38E+15 6.60E-11 Y 

1000 

500 2.0511 2.33E+15 1.90E-12 Y 

1000 2.0511 3.30E+15 1.37E-11 Y 

1500 2.0511 4.04E+15 2.86E-11 Y 
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Table 52: LEO (400 km altitude) @ i=75º, MgF2, Worst Case Scenario 

ISD (m) Energy (eV) Time (min) Flux (#/m
2
-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 92.5576 1.59E+19 8.28E-06 N 

1000 92.5576 2.25E+19 1.56E-05 N 

1500 92.5576 2.76E+19 2.36E-05 N 

100 

500 92.5576 3.98E+18 2.07E-06 N 

1000 92.5576 5.63E+18 3.89E-06 N 

1500 92.5576 6.90E+18 5.89E-06 N 

250 

500 49.4837 6.37E+17 
1.77E-07 

N 

1000 49.4837 9.01E+17 3.33E-07 N 

1500 49.4837 1.10E+18 5.04E-07 N 

500 

500 2.5639 
4.26E+15 

6.24E-11 Y 

1000 2.5639 6.03E+15 1.11E-10 Y 

1500 2.5639 7.38E+15 1.69E-10 Y 

1000 

500 2.0511 2.33E+15 2.74E-11 Y 

1000 2.0511 3.30E+15 4.85E-11 Y 

1500 2.0511 4.04E+15 7.37E-11 Y 
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Table 53: LEO (400 km altitude) @ i=75º, ITO, Best Case Scenario 

ISD (m) Energy (eV) Time (min) Flux (#/m
2
-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 92.5576 1.59E+19 1.40E-05 N 

1000 92.5576 2.25E+19 4.41E-05 N 

1500 92.5576 2.76E+19 7.61E-05 N 

100 

500 92.5576 3.98E+18 3.49E-06 N 

1000 92.5576 5.63E+18 1.10E-05 N 

1500 92.5576 6.90E+18 1.90E-05 N 

250 

500 49.4837 6.37E+17 
2.99E-07 

N 

1000 49.4837 9.01E+17 9.43E-07 N 

1500 49.4837 1.10E+18 1.63E-06 N 

500 

500 2.5639 
4.26E+15 

9.38E-11 Y 

1000 2.5639 6.03E+15 3.07E-10 Y 

1500 2.5639 7.38E+15 5.36E-10 Y 

1000 

500 2.0511 2.33E+15 4.05E-11 Y 

1000 2.0511 3.30E+15 1.33E-10 Y 

1500 2.0511 4.04E+15 2.33E-10 Y 
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Table 54: LEO (400 km altitude) @ i=75º, ITO, Worst Case Scenario 

ISD (m) Energy (eV) Time (min) Flux (#/m
2
-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 92.5576 1.59E+19 4.73E-05 N 

1000 92.5576 2.25E+19 9.21E-05 N 

1500 92.5576 2.76E+19 1.35E-04 N 

100 

500 92.5576 3.98E+18 1.18E-05 N 

1000 92.5576 5.63E+18 2.30E-05 N 

1500 92.5576 6.90E+18 3.39E-05 N 

250 

500 49.4837 6.37E+17 
1.01E-06 

N 

1000 49.4837 9.01E+17 1.97E-06 N 

1500 49.4837 1.10E+18 2.90E-06 N 

500 

500 2.5639 
4.26E+15 

3.42E-10 Y 

1000 2.5639 6.03E+15 6.62E-10 Y 

1500 2.5639 7.38E+15 9.77E-10 Y 

1000 

500 2.0511 2.33E+15 1.49E-10 Y 

1000 2.0511 3.30E+15 2.89E-10 Y 

1500 2.0511 4.04E+15 4.26E-10 Y 
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Table 55: LEO (400 km altitude) @ i=90º, Aluminum 

ISD (m) Energy (eV) Time (min) Flux (#/m
2
-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 92.5576 1.59E+19 1.35E-06 N 

1000 92.5576 2.25E+19 3.20E-06 N 

1500 92.5576 2.76E+19 5.06E-06 N 

100 

500 92.5576 3.98E+18 3.37E-07 N 

1000 92.5576 5.63E+18 8.01E-07 N 

1500 92.5576 6.90E+18 1.27E-06 N 

250 

500 47.9453 6.37E+17 
2.79E-08 

N 

1000 47.9453 9.01E+17 6.64E-08 N 

1500 47.9453 1.10E+18 1.05E-07 N 

500 

500 7.6918 
4.26E+15 

9.06E-11 Y 

1000 7.6918 6.03E+15 2.16E-10 Y 

1500 7.6918 7.38E+15 3.42E-10 Y 

1000 

500 7.6918 2.33E+15 2.82E-11 Y 

1000 7.6918 3.30E+15 6.74E-11 Y 

1500 7.6918 4.04E+15 1.07E-10 Y 
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Table 56: LEO (400 km altitude) @ i=90º, MgF2, Best Case Scenario 

ISD (m) Energy (eV) Time (min) Flux (#/m
2
-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 92.5576 1.59E+19 7.60E-07 N 

1000 92.5576 2.25E+19 4.74E-06 N 

1500 92.5576 2.76E+19 9.57E-06 N 

100 

500 92.5576 3.98E+18 1.90E-07 N 

1000 92.5576 5.63E+18 1.18E-06 N 

1500 92.5576 6.90E+18 2.39E-06 N 

250 

500 47.9453 6.37E+17 
1.57E-08 

N 

1000 47.9453 9.01E+17 9.82E-08 N 

1500 47.9453 1.10E+18 1.98E-07 N 

500 

500 7.6918 
4.26E+15 

4.85E-11 Y 

1000 7.6918 6.03E+15 3.14E-10 Y 

1500 7.6918 7.38E+15 6.40E-10 Y 

1000 

500 7.6918 2.33E+15 1.46E-11 Y 

1000 7.6918 3.30E+15 9.69E-11 Y 

1500 7.6918 4.04E+15 1.99E-10 Y 
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Table 57: LEO (400 km altitude) @ i=90º, MgF2, Worst Case Scenario 

ISD (m) Energy (eV) Time (min) Flux (#/m
2
-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 92.5576 1.59E+19 8.28E-06 N 

1000 92.5576 2.25E+19 1.56E-05 N 

1500 92.5576 2.76E+19 2.36E-05 N 

100 

500 92.5576 3.98E+18 2.07E-06 N 

1000 92.5576 5.63E+18 3.89E-06 N 

1500 92.5576 6.90E+18 5.89E-06 N 

250 

500 47.9453 6.37E+17 
1.71E-07 

N 

1000 47.9453 9.01E+17 3.22E-07 N 

1500 47.9453 1.10E+18 4.88E-07 N 

500 

500 7.6918 
4.26E+15 

5.69E-10 Y 

1000 7.6918 6.03E+15 1.05E-09 Y 

1500 7.6918 7.38E+15 1.60E-09 Y 

1000 

500 7.6918 2.33E+15 1.80E-10 Y 

1000 7.6918 3.30E+15 3.29E-10 Y 

1500 7.6918 4.04E+15 4.99E-10 Y 
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Table 58: LEO (400 km altitude) @ i=90º, ITO, Best Case Scenario 

ISD (m) Energy (eV) Time (min) Flux (#/m
2
-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 92.5576 1.59E+19 1.40E-05 N 

1000 92.5576 2.25E+19 4.41E-05 N 

1500 92.5576 2.76E+19 7.61E-05 N 

100 

500 92.5576 3.98E+18 3.49E-06 N 

1000 92.5576 5.63E+18 1.10E-05 N 

1500 92.5576 6.90E+18 1.90E-05 N 

250 

500 47.9453 6.37E+17 
2.90E-07 

N 

1000 47.9453 9.01E+17 9.14E-07 N 

1500 47.9453 1.10E+18 1.58E-06 N 

500 

500 7.6918 
4.26E+15 

9.27E-10 Y 

1000 7.6918 6.03E+15 2.96E-09 Y 

1500 7.6918 7.38E+15 5.12E-09 Y 

1000 

500 7.6918 2.33E+15 2.86E-10 Y 

1000 7.6918 3.30E+15 9.19E-10 Y 

1500 7.6918 4.04E+15 1.60E-09 Y 
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Table 59: LEO (400 km altitude) @ i=90º, ITO, Worst Case Scenario 

ISD (m) Energy (eV) Time (min) Flux (#/m
2
-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 92.5576 1.59E+19 4.73E-05 N 

1000 92.5576 2.25E+19 9.21E-05 N 

1500 92.5576 2.76E+19 1.35E-04 N 

100 

500 92.5576 3.98E+18 1.18E-05 N 

1000 92.5576 5.63E+18 2.30E-05 N 

1500 92.5576 6.90E+18 3.39E-05 N 

250 

500 47.9453 6.37E+17 
9.81E-07 

N 

1000 47.9453 9.01E+17 1.91E-06 N 

1500 47.9453 1.10E+18 2.81E-06 N 

500 

500 7.6918 
4.26E+15 

3.21E-09 Y 

1000 7.6918 6.03E+15 6.24E-09 Y 

1500 7.6918 7.38E+15 9.19E-09 Y 

1000 

500 7.6918 2.33E+15 1.00E-09 Y 

1000 7.6918 3.30E+15 1.95E-09 Y 

1500 7.6918 4.04E+15 2.87E-09 Y 
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C.5. Previous Sun-Synchronous Erosion Study Dataset 

 

 

 

Table 60: Sun-Sync (705 km altitude) @ i=98.14º, Aluminum 

ISD (m) Energy (eV) Time (min) Flux (#/m
2
-s) Depth (m) 

Energy 

Loss? 

(Y/N) 

50 

500 98.8748 1.59E+19 1.44E-06 N 

1000 98.8748 2.25E+19 3.42E-06 N 

1500 98.8748 2.76E+19 5.41E-06 N 

100 

500 98.8748 3.98E+18 3.60E-07 N 

1000 98.8748 5.63E+18 8.55E-07 N 

1500 98.8748 6.90E+18 1.35E-06 N 

250 

500 68.7467 6.37E+17 4.01E-08 N 

1000 68.7467 9.01E+17 9.52E-08 N 

1500 68.7467 1.10E+18 1.50E-07 N 

500 

500 7.1212 1.13E+16 7.14E-11 Y 

1000 7.1212 1.59E+16 1.71E-10 Y 

1500 7.1212 1.95E+16 2.70E-10 Y 

1000 

500 7.1212 2.82E+15 1.78E-11 Y 

1000 7.1212 3.98E+15 4.27E-11 Y 

1500 7.1212 4.88E+15 6.76E-11 Y 
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𝑣𝑡ℎ,𝑛 = √
8𝑘𝐵𝑇

𝜋𝑚𝑛

(D-1) 

Equation D-0-1: 3-D Average Thermal Velocity [m/s] 

𝛤𝑛 =
1

4
𝑛𝑛𝑣𝑡ℎ,𝑛 (D-2) 

Equation D-0-2: Neutral Flux [#/m2-s] 

 

𝑃𝑛 = 𝑛𝑛𝑘𝐵𝑇 (D-3) 

Equation D-0-3: Neutral Pressure [Pa] 

𝛤𝑛 =
𝑃𝑛

√2𝜋𝑘𝐵𝑇𝑚𝑛

(D-4) 

Equation D-0-4: Neutral Flux [#/m2-s] [70] 

 

Appendix D: Impurity Flux Assessment 

 As mentioned in Section 6.2, the vacuum environment for the sputter experiments 

carries a high chance for a phenomenon called target poisoning, a type of material 

interference from impurity flux to the samples within high vacuum environments. As 

described by Güttler, the concept of impurity flux comes directly from neutral 

bombardment to the sample[70]. This bombardment would take place at the thermal 

velocity of the gas, as shown in Equation D-1. This thermal velocity can then be used to 

calculate the impurity flux based on the density of particles, as demonstrated in Equation 

D-2. 

 Impurity flux can also be calculated using the partial pressure of the neutral gas, 

as shown in Equation D-3 and Equation D-4. 
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𝑁𝑎𝑑𝑠𝑜𝑟𝑏 = 𝛤𝑛𝑆 (D-5) 

Equation D-0-5: Number of Particles Adsorbed [#] 

𝑆 = 𝑆0 (1 + 𝑘
𝜃

1 − 𝜃
)

−1

(D-6) 

Equation D-0-6: Sticking Coefficient [70] 

 

 

Fig. 108: Sticking Coefficient Data for Nitrogen Adsorption on Tungsten 

[71] 

 

 Once the impurity flux is known, we can then calculate the probability that the 

target will be poisoned. This is conducted through use of the sticking coefficient, S. As 

described by Güttler, this sticking coefficient is a function of temperature, surface 

roughness and θ, the surface compound fraction, and is bound between 0 and 1. Once S is 

known, we can then proceed to find the amount of particles that adhere, or adsorb, to the 

surface. These parameters are represented by Equation D-5 and Equation D-6, 

respectively. It is important to note that this process usually only builds one monolayer of 

material on the surface if it completely adsorbs. 

 However, it is important to note that an analysis by Wanlass notes that S is 

inversely proportional to the temperature of the local environment[71]. This work shows 

two separate experiments analyzing the sticking coefficients of nitrogen on tungsten from 

Ehrlich (A) and Kisliuk (B). Both researchers noted the temperature dependence of the 

coefficients.  This data 

is shown in Fig. 108. 

Wanlass also noted that 

the data from Kisliuk 

could be fit onto the 

Ehrlich data with the 
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𝑃 = 𝐼𝜑 (D-7) 

Equation D-0-7: Input Power [W] 

𝑃 = 𝜀𝜎𝐴𝑇4 (D-8) 

Equation D-0-8: Radiated Power [W] 

use of a scale factor, shown in Fig. 108 as the dashed line.  

For the experiments performed within this work, the standard operating pressure 

was 0.2-0.4 mTorr, or 2.7-5.3x10-2 Pa, respectively. This is also taking into account the 

flow of xenon gas through the chamber. Without the xenon flow to consider, the 

background pressure of the vacuum chamber alone is 0.18 mTorr. This represents a 

possible impurity flux of ~1020 #/m2-s from neutrals such as nitrogen (N2) and oxygen 

(O2). A representative ion flux to the sample at 500 eV would be ~1019 #/m2-s, which 

would state that the impurity flux is an order of magnitude higher than the ion flux. 

 However, it is important to recall the discussion from above with regards to 

sticking coefficient and temperature effects on the sample. As noted in Section 7.4, the 

surface temperature for the majority of the samples was sufficiently increased due to the 

power input to the sample from the beam and the lack of active cooling to the sample 

throughout the experiment. Because of the direct impingement of the beam, the power 

input to the sample is represented by the product of the current to the exposed area and 

the kinetic energy of the beam, as represented in Equation D-7. This, in turn, can be 

equated to blackbody radiation expression for power, shown in Equation D-8, in order to 

find the temperature of the surface.  

From these equations, we can determine that even at the lowest energies for this 

effort, the temperature on the sample would at least be 400 K, a region where the sticking 
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coefficient would be assumed to be low, depending on the reaction. Also, due to the Al 

calibration experiments at 1200 eV, the difference between the data point from this work 

and the Tartz data is relatively low, considering the Tartz experiment was performed in a 

vacuum chamber with ~10-8 mbar pressure before Xe flow; with Xe flow, this would 

become a 3.75x10-5 Torr (5x10-5 mbar) vacuum environment[37]. 

Another factor to note is that, because of the temperature of the sample and its 

surroundings, if any particles did adsorb and combine with any of the surface atoms, most 

of the byproducts would melt immediately due to their reduced melting temperatures as 

laid out by the Clausius-Clapeyron relation (Equation 7-1), such as Indium Oxide. 

 Lastly, experiments performed using the SPPL-1 also showed very little in the 

form of target poisoning due to EDS scans taken from the exposed areas of the Al 6061-

T4 samples[60]. These EDS scans indicated that, although there was oxygen presented 

inside the scanned areas, these particles were present in the alloyed sample and actually 

decreased in concentration in the exposed areas versus the unexposed areas of the 

surface. Therefore, it is reasonable to assume that, despite the impurity flux to the sample, 

due to a low sticking coefficient, the flux has a minimal effect on the sputter results 

presented in this work. 
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Fig. 109: SPPL-1 Frame 

 

Appendix E: SPPL-1 Ion Source 

E.1. Introduction 

At the early phase of this experimental effort, it was decided to create an ion 

source that could perform the early erosion experiments to gather preliminary data for 

this work. To this end, it was decided to create a lab-model ion engine in order to sputter 

Al 6061-T4 samples with an Argon ion beam. This ion engine would be a representative 

case of the beam plumes that could be seen in orbit. It would also serve as a teaching tool 

for several undergraduate lab courses that were just being introduced to plasma thrusters. 

As a result, this would become, to the author’s knowledge, the first ion engine with a 

transparent discharge chamber in order to visually observe the plasma that is formed 

within. 

E.2. Structural Components 

 In order to visually inspect the plasma, the frame had to allow for visualization of 

the discharge chamber. The discharge chamber itself, was made out of a custom-cut 

quartz tube by Scientific Glass International with a 9 cm inner diameter. The anode, 

which would also have to be as transparent as 

possible, was made out of standard metallic 

mesh that could withstand the temperatures 

expected from the plasma and the emitter 

cathode. The frame surrounding the discharge 

chamber includes the retainer ring and the 

cathode cap flanking both sides of the tube, the 
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Fig. 110: SPPL-1 Optics Grids w/Alumina spacers 

 

magnet frame, and the neutralizer pod (which attaches at the top of the magnet frame). 

The cathode cap contained multiple orifices for the emission cathode (to be supported by 

tungsten rods to conduct power and allow for cooling of the cathode), the propellant gas 

feed (a pressure orifice with a 10.5 µm hole for choked flow control) created by Lenox 

Laser, Inc., and for a Langmuir probe to conduct plasma diagnostics of the discharge 

chamber. The entirety of the frame, which includes supports for the SPPL-1 to directly 

connect to the vacuum chamber, is made of stainless steel. The magnet frame would 

become home to three R1410 ring magnets with an inner diameter of 10 cm, each with a 

maximum magnetic strength of 0.49 T at the edges of the magnet. The frame was 

designed by the author and constructed by Ed Cole of the Institute for Physical Sciences 

and Technology. 

E.3. Internal Components 

 In order to create the ion beam required for the experiments, the following 

components would be required: 1) ion optics, 2) electron sources, and 3) appropriate 

power sources. This section will give a brief overview of these components. 

E.3.1. Ion Optics 

 As mentioned in Section 1.1.2, the 

ion optics allow for the focusing of the 

ions from the discharge chamber into 

beamlets that then accelerate the ions to 

create thrust. Normally, these are grids 

with thousands of holes to create these 
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𝐽 = 𝐴𝑇2𝑒
−𝑘𝑇

𝑒𝜑⁄ (E-1) 

Equation E-1: Richardson Thermionic Equation 

 

beamlets to maximize ion transparency, but minimize neutral transparency to increase 

efficiency. However, due to the current levels that were required for the experiment, each 

grid only required ~280 holes per grid, each appropriately sized to maximize beamlet 

efficiency. These grids were also made of stainless steel and created by Lenox Laser, Inc. 

In order to separate the grids from each other, alumina spacers were custom-made by 

Kadco Ceramics to insulate each of the grids from each other as well as the anode inside 

the discharge chamber. The spacing between each of the grids is 2 mm. 

E.3.2. Electron Sources 

 In order to provide the primary electrons for ionization, an emission cathode 

would be required. To this end, a thermionic filament was to be utilized. Although hollow 

cathodes are vastly more efficient, a thermionic filament was used due to ease of 

maintenance and cost. At first, tantalum filaments were used for electron sources. This 

was due to the increased potential for electron emission based on the material’s work 

function φ, or the minimum energy required to liberate free electrons from a transition 

metal. This effect is mapped by the Richardson equation for current density (shown in 

Equation E-1), a basemark equation for thermionic emission. However, while these were 

successful, they were less robust than the standard tungsten filaments. The tradeoff for 

the reduced electron emission from the higher work function of tungsten metal is the 

increased melting temperature of the material, which allows for longer durations of use. 
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Fig. 111: Electrical Diagram for SPPL-1 [60] 

Table 61: Electrical Components for SPPL-1 [60] 

Component Power Supply 

Emitter Filament (EF) Acopian A015HX1000M 

Discharge Supply (DC) Acopian A0100MX25 

Anode (AN) Acopian A0150NX05 

Accelerator Grid (AC) Acopian N01HA30 

Neutralizer Filament (NF) Mastech TP3020-D 

 

 

E.3.3. Power System Description 

To generate the ion beam from this type of electrostatic thruster, multiple power 

sources are required in order to generate the beam. Power sources for the following 

components are needed: the anode, emission cathode, the neutralizer cathode, the screen 

grid, the accelerator grid, and a discharge power supply to handle the electron pumping 

for the ionization process. These power supplies would also have to be held relative to the 

anode potential, as well. A schematic of the power system as well as a listing of all 

appropriate power supplies are listed below. 

E.4. Conclusion 

 Although the SPPL-1 ion source was not utilized for the experiments presented in 

this work, the ion source was used to carry out material experiments which are outlined in 
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Fig. 112: SPPL-1 First Plasma Ignition 

 

 

Fig. 113: SPPL-1 

 

the author’s previous work[60]. The ion source also contributed to an ion beam modelling 

effort as a part of the AFOSR research grant for this project, as well[72]. The ion source 

successfully created ion beams up to 350 eV with Ar propellant. The source was to be 

retrofitted to perform at higher energies, but the Tectra ion source became available and 

the refit of the source was halted. 
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